@stdlib/math-base-special-betaln
v0.2.2
Published
Natural logarithm of the beta function.
Downloads
124,012
Readme
betaln
Natural logarithm of the beta function.
The beta function, also called the Euler integral, is defined as
The beta function is related to the gamma function via the following equation
Installation
npm install @stdlib/math-base-special-betaln
Usage
var betaln = require( '@stdlib/math-base-special-betaln' );
betaln( x, y )
Evaluates the the natural logarithm of the beta function.
var val = betaln( 0.0, 0.0 );
// returns Infinity
val = betaln( 1.0, 1.0 );
// returns 0.0
val = betaln( -1.0, 2.0 );
// returns NaN
val = betaln( 5.0, 0.2 );
// returns ~1.218
val = betaln( 4.0, 1.0 );
// returns ~-1.386
Examples
var betaln = require( '@stdlib/math-base-special-betaln' );
var x;
var y;
for ( x = 0; x < 10; x++ ) {
for ( y = 10; y > 0; y-- ) {
console.log( 'x: %d, \t y: %d, \t f(x,y): %d', x, y, betaln( x, y ) );
}
}
See Also
@stdlib/math-base/special/beta
: beta function.@stdlib/math-base/special/betainc
: incomplete beta function.@stdlib/math-base/special/betaincinv
: inverse incomplete beta function.
Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
Copyright
Copyright © 2016-2024. The Stdlib Authors.