npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

@stdlib/math-base-ops-cdiv

v0.2.2

Published

Divide two complex numbers.

Downloads

21

Readme

cdiv

NPM version Build Status Coverage Status

Divide two double-precision complex floating-point numbers.

Installation

npm install @stdlib/math-base-ops-cdiv

Usage

var cdiv = require( '@stdlib/math-base-ops-cdiv' );

cdiv( z1, z2 )

Divides two double-precision complex floating-point numbers.

var Complex128 = require( '@stdlib/complex-float64-ctor' );
var real = require( '@stdlib/complex-float64-real' );
var imag = require( '@stdlib/complex-float64-imag' );

var z1 = new Complex128( -13.0, -1.0 );
var z2 = new Complex128( -2.0, 1.0 );

var v = cdiv( z1, z2 );
// returns <Complex128>

var re = real( v );
// returns 5.0

var im = imag( v );
// returns 3.0

Examples

var Complex128 = require( '@stdlib/complex-float64-ctor' );
var discreteUniform = require( '@stdlib/random-base-discrete-uniform' );
var real = require( '@stdlib/complex-float64-real' );
var imag = require( '@stdlib/complex-float64-imag' );
var cdiv = require( '@stdlib/math-base-ops-cdiv' );

function randomComplex() {
    var re = discreteUniform( -50, 50 );
    var im = discreteUniform( -50, 50 );
    return new Complex128( re, im );
}

var z1;
var z2;
var z3;
var i;
for ( i = 0; i < 100; i++ ) {
    z1 = randomComplex();
    z2 = randomComplex();
    z3 = cdiv( z1, z2 );
    console.log( '(%s) / (%s) = %s', z1.toString(), z2.toString(), z3.toString() );
}

C APIs

Usage

#include "stdlib/math/base/ops/cdiv.h"

stdlib_base_cdiv( z1, z2 )

Divides two double-precision complex floating-point numbers.

#include "stdlib/complex/float64/ctor.h"
#include "stdlib/complex/float64/real.h"
#include "stdlib/complex/float64/imag.h"

stdlib_complex128_t z1 = stdlib_complex128( -13.0, -1.0 );
stdlib_complex128_t z2 = stdlib_complex128( -2.0, 1.0 );

stdlib_complex128_t out = stdlib_base_cdiv( z1, z2 );

double re = stdlib_complex128_real( out );
// returns 5.0

double im = stdlib_complex128_imag( out );
// returns 3.0

The function accepts the following arguments:

  • z1: [in] stdlib_complex128_t input value.
  • z2: [in] stdlib_complex128_t input value.
stdlib_complex128_t stdlib_base_cdiv( const stdlib_complex128_t z1, const stdlib_complex128_t z2 );

Examples

#include "stdlib/math/base/ops/cdiv.h"
#include "stdlib/complex/float64/ctor.h"
#include "stdlib/complex/float64/reim.h"
#include <stdio.h>

int main( void ) {
    const stdlib_complex128_t x[] = {
        stdlib_complex128( 3.14, 1.5 ),
        stdlib_complex128( -3.14, 1.5 ),
        stdlib_complex128( 0.0, -0.0 ),
        stdlib_complex128( 0.0/0.0, 0.0/0.0 )
    };

    stdlib_complex128_t v;
    stdlib_complex128_t y;
    double re;
    double im;
    int i;
    for ( i = 0; i < 4; i++ ) {
        v = x[ i ];
        stdlib_complex128_reim( v, &re, &im );
        printf( "z = %lf + %lfi\n", re, im );

        y = stdlib_base_cdiv( v, v );
        stdlib_complex128_reim( y, &re, &im );
        printf( "cdiv(z, z) = %lf + %lfi\n", re, im );
    }
}

References

  • Smith, Robert L. 1962. "Algorithm 116: Complex Division." Commun. ACM 5 (8). New York, NY, USA: ACM: 435. doi:10.1145/368637.368661.
  • Stewart, G. W. 1985. "A Note on Complex Division." ACM Trans. Math. Softw. 11 (3). New York, NY, USA: ACM: 238–41. doi:10.1145/214408.214414.
  • Priest, Douglas M. 2004. "Efficient Scaling for Complex Division." ACM Trans. Math. Softw. 30 (4). New York, NY, USA: ACM: 389–401. doi:10.1145/1039813.1039814.
  • Baudin, Michael, and Robert L. Smith. 2012. "A Robust Complex Division in Scilab." arXiv abs/1210.4539 [cs.MS] (October): 1–25. <https://arxiv.org/abs/1210.4539>.

See Also


Notice

This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.

Community

Chat


License

See LICENSE.

Copyright

Copyright © 2016-2024. The Stdlib Authors.