@stdlib/blas-sdot
v0.2.2
Published
Calculate the dot product of two single-precision floating-point vectors.
Downloads
18
Readme
sdot
Calculate the dot product of two single-precision floating-point vectors.
The dot product (or scalar product) is defined as
Installation
npm install @stdlib/blas-sdot
Usage
var sdot = require( '@stdlib/blas-sdot' );
sdot( x, y )
Calculates the dot product of vectors x
and y
.
var Float32Array = require( '@stdlib/array-float32' );
var array = require( '@stdlib/ndarray-array' );
var x = array( new Float32Array( [ 4.0, 2.0, -3.0, 5.0, -1.0 ] ) );
var y = array( new Float32Array( [ 2.0, 6.0, -1.0, -4.0, 8.0 ] ) );
var z = sdot( x, y );
// returns -5.0
The function has the following parameters:
- x: a 1-dimensional
ndarray
whose underlying data type isfloat32
. - y: a 1-dimensional
ndarray
whose underlying data type isfloat32
.
If provided empty vectors, the function returns 0.0
.
var Float32Array = require( '@stdlib/array-float32' );
var array = require( '@stdlib/ndarray-array' );
var x = array( new Float32Array() );
var y = array( new Float32Array() );
var z = sdot( x, y );
// returns 0.0
Notes
Examples
var discreteUniform = require( '@stdlib/random-base-discrete-uniform' );
var Float32Array = require( '@stdlib/array-float32' );
var array = require( '@stdlib/ndarray-array' );
var sdot = require( '@stdlib/blas-sdot' );
var x = array( new Float32Array( 10 ) );
var y = array( new Float32Array( 10 ) );
var rand1 = discreteUniform.factory( 0, 100 );
var rand2 = discreteUniform.factory( 0, 10 );
var i;
for ( i = 0; i < x.length; i++ ) {
x.set( i, rand1() );
y.set( i, rand2() );
}
console.log( x.toString() );
console.log( y.toString() );
var z = sdot( x, y );
console.log( z );
See Also
@stdlib/blas-base/sdot
: calculate the dot product of two single-precision floating-point vectors.@stdlib/blas-ddot
: calculate the dot product of two double-precision floating-point vectors.@stdlib/blas-gdot
: calculate the dot product of two vectors.
Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
License
See LICENSE.
Copyright
Copyright © 2016-2024. The Stdlib Authors.