npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

@stdlib/blas-ext-base-grev

v0.2.1

Published

Reverse a strided array in-place.

Downloads

866

Readme

grev

NPM version Build Status Coverage Status

Reverse a strided array in-place.

Installation

npm install @stdlib/blas-ext-base-grev

Usage

var grev = require( '@stdlib/blas-ext-base-grev' );

grev( N, x, stride )

Reverses a strided array x in-place.

var x = [ -2.0, 1.0, 3.0, -5.0, 4.0, 0.0, -1.0, -3.0 ];

grev( x.length, x, 1 );
// x => [ -3.0, -1.0, 0.0, 4.0, -5.0, 3.0, 1.0, -2.0 ]

The function has the following parameters:

  • N: number of indexed elements.
  • x: input array.
  • stride: index increment.

The N and stride parameters determine which elements in x are accessed at runtime. For example, to reverse every other element

var floor = require( '@stdlib/math-base-special-floor' );

var x = [ -2.0, 1.0, 3.0, -5.0, 4.0, 0.0, -1.0, -3.0 ];
var N = floor( x.length / 2 );

grev( N, x, 2 );
// x => [ -1.0, 1.0, 4.0, -5.0, 3.0, 0.0, -2.0, -3.0 ]

Note that indexing is relative to the first index. To introduce an offset, use typed array views.

var Float64Array = require( '@stdlib/array-float64' );
var floor = require( '@stdlib/math-base-special-floor' );

// Initial array...
var x0 = new Float64Array( [ 1.0, -2.0, 3.0, -4.0, 5.0, -6.0 ] );

// Create an offset view...
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var N = floor( x0.length/2 );

// Reverse every other element...
grev( N, x1, 2 );
// x0 => <Float64Array>[ 1.0, -6.0, 3.0, -4.0, 5.0, -2.0 ]

grev.ndarray( N, x, stride, offset )

Reverses a strided array x in-place using alternative indexing semantics.

var x = [ -2.0, 1.0, 3.0, -5.0, 4.0, 0.0, -1.0, -3.0 ];

grev.ndarray( x.length, x, 1, 0 );
// x => [ -3.0, -1.0, 0.0, 4.0, -5.0, 3.0, 1.0, -2.0 ]

The function has the following additional parameters:

  • offset: starting index.

While typed array views mandate a view offset based on the underlying buffer, the offset parameter supports indexing semantics based on a starting index. For example, to access only the last three elements of x

var x = [ 1.0, -2.0, 3.0, -4.0, 5.0, -6.0 ];

grev.ndarray( 3, x, 1, x.length-3 );
// x => [ 1.0, -2.0, 3.0, -6.0, 5.0, -4.0 ]

Notes

  • If N <= 0, both functions return x unchanged.
  • Both functions support array-like objects having getter and setter accessors for array element access (e.g., @stdlib/array-complex64).
  • Where possible, one should "reverse" a strided array by negating its stride, which is an O(1) operation, in contrast to performing an in-place reversal, which is O(N). However, in certain circumstances, this is not tenable, particularly when interfacing with libraries which assume and/or expect a specific memory layout (e.g., strided array elements arranged in memory in ascending order). In general, when working with strided arrays, only perform an in-place reversal when strictly necessary.
  • Depending on the environment, the typed versions (drev, srev, etc.) are likely to be significantly more performant.

Examples

var discreteUniform = require( '@stdlib/random-base-discrete-uniform' ).factory;
var Float64Array = require( '@stdlib/array-float64' );
var gfillBy = require( '@stdlib/blas-ext-base-gfill-by' );
var grev = require( '@stdlib/blas-ext-base-grev' );

var x = gfillBy( 10, new Float64Array( 10 ), 1, discreteUniform( -100, 100 ) );
console.log( x );

grev( x.length, x, 1 );
console.log( x );

See Also


Notice

This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.

Community

Chat


License

See LICENSE.

Copyright

Copyright © 2016-2024. The Stdlib Authors.