@stdlib/blas-ext-base-gcusum
v0.2.2
Published
Calculate the cumulative sum of strided array elements.
Downloads
9
Readme
gcusum
Calculate the cumulative sum of strided array elements.
Installation
npm install @stdlib/blas-ext-base-gcusum
Usage
var gcusum = require( '@stdlib/blas-ext-base-gcusum' );
gcusum( N, sum, x, strideX, y, strideY )
Computes the cumulative sum of strided array elements.
var x = [ 1.0, -2.0, 2.0 ];
var y = [ 0.0, 0.0, 0.0 ];
gcusum( x.length, 0.0, x, 1, y, 1 );
// y => [ 1.0, -1.0, 1.0 ]
x = [ 1.0, -2.0, 2.0 ];
y = [ 0.0, 0.0, 0.0 ];
gcusum( x.length, 10.0, x, 1, y, 1 );
// y => [ 11.0, 9.0, 11.0 ]
The function has the following parameters:
- N: number of indexed elements.
- sum: initial sum.
- x: input
Array
ortyped array
. - strideX: index increment for
x
. - y: output
Array
ortyped array
. - strideY: index increment for
y
.
The N
and stride
parameters determine which elements in x
and y
are accessed at runtime. For example, to compute the cumulative sum of every other element in x
,
var floor = require( '@stdlib/math-base-special-floor' );
var x = [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0 ];
var y = [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ];
var N = floor( x.length / 2 );
var v = gcusum( N, 0.0, x, 2, y, 1 );
// y => [ 1.0, 3.0, 1.0, 5.0, 0.0, 0.0, 0.0, 0.0 ]
Note that indexing is relative to the first index. To introduce an offset, use typed array
views.
var Float64Array = require( '@stdlib/array-float64' );
var floor = require( '@stdlib/math-base-special-floor' );
// Initial arrays...
var x0 = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var y0 = new Float64Array( x0.length );
// Create offset views...
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var y1 = new Float64Array( y0.buffer, y0.BYTES_PER_ELEMENT*3 ); // start at 4th element
var N = floor( x0.length / 2 );
gcusum( N, 0.0, x1, -2, y1, 1 );
// y0 => <Float64Array>[ 0.0, 0.0, 0.0, 4.0, 6.0, 4.0, 5.0, 0.0 ]
gcusum.ndarray( N, sum, x, strideX, offsetX, y, strideY, offsetY )
Computes the cumulative sum of strided array elements using alternative indexing semantics.
var x = [ 1.0, -2.0, 2.0 ];
var y = [ 0.0, 0.0, 0.0 ];
gcusum.ndarray( x.length, 0.0, x, 1, 0, y, 1, 0 );
// y => [ 1.0, -1.0, 1.0 ]
The function has the following additional parameters:
- offsetX: starting index for
x
. - offsetY: starting index for
y
.
While typed array
views mandate a view offset based on the underlying buffer
, offsetX
and offsetY
parameters support indexing semantics based on a starting indices. For example, to calculate the cumulative sum of every other value in x
starting from the second value and to store in the last N
elements of y
starting from the last element
var floor = require( '@stdlib/math-base-special-floor' );
var x = [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ];
var y = [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ];
var N = floor( x.length / 2 );
gcusum.ndarray( N, 0.0, x, 2, 1, y, -1, y.length-1 );
// y => [ 0.0, 0.0, 0.0, 0.0, 5.0, 1.0, -1.0, 1.0 ]
Notes
- If
N <= 0
, both functions returny
unchanged. - Depending on the environment, the typed versions (
dcusum
,scusum
, etc.) are likely to be significantly more performant.
Examples
var randu = require( '@stdlib/random-base-randu' );
var round = require( '@stdlib/math-base-special-round' );
var Float64Array = require( '@stdlib/array-float64' );
var gcusum = require( '@stdlib/blas-ext-base-gcusum' );
var y;
var x;
var i;
x = new Float64Array( 10 );
y = new Float64Array( x.length );
for ( i = 0; i < x.length; i++ ) {
x[ i ] = round( randu()*100.0 );
}
console.log( x );
console.log( y );
gcusum( x.length, 0.0, x, 1, y, -1 );
console.log( y );
See Also
@stdlib/blas-ext/base/dcusum
: calculate the cumulative sum of double-precision floating-point strided array elements.@stdlib/blas-ext/base/gcusumpw
: calculate the cumulative sum of strided array elements using pairwise summation.@stdlib/blas-ext/base/scusum
: calculate the cumulative sum of single-precision floating-point strided array elements.
Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
License
See LICENSE.
Copyright
Copyright © 2016-2024. The Stdlib Authors.