npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

@stdlib/blas-ext-base-dnannsumors

v0.2.2

Published

Calculate the sum of double-precision floating-point strided array elements, ignoring NaN values and using ordinary recursive summation.

Downloads

35

Readme

dnannsumors

NPM version Build Status Coverage Status

Calculate the sum of double-precision floating-point strided array elements, ignoring NaN values and using ordinary recursive summation.

Installation

npm install @stdlib/blas-ext-base-dnannsumors

Usage

var dnannsumors = require( '@stdlib/blas-ext-base-dnannsumors' );

dnannsumors( N, x, strideX, out, strideOut )

Computes the sum of double-precision floating-point strided array elements, ignoring NaN values and using ordinary recursive summation.

var Float64Array = require( '@stdlib/array-float64' );

var x = new Float64Array( [ 1.0, -2.0, NaN, 2.0 ] );
var out = new Float64Array( 2 );

var v = dnannsumors( x.length, x, 1, out, 1 );
// returns <Float64Array>[ 1.0, 3 ]

The function has the following parameters:

  • N: number of indexed elements.
  • x: input Float64Array.
  • strideX: index increment for x.
  • out: output Float64Array whose first element is the sum and whose second element is the number of non-NaN elements.
  • strideOut: index increment for out.

The N and stride parameters determine which elements are accessed at runtime. For example, to compute the sum of every other element in x,

var Float64Array = require( '@stdlib/array-float64' );

var x = new Float64Array( [ 1.0, 2.0, NaN, -7.0, NaN, 3.0, 4.0, 2.0 ] );
var out = new Float64Array( 2 );

var v = dnannsumors( 4, x, 2, out, 1 );
// returns <Float64Array>[ 5.0, 2 ]

Note that indexing is relative to the first index. To introduce an offset, use typed array views.

var Float64Array = require( '@stdlib/array-float64' );

var x0 = new Float64Array( [ 2.0, 1.0, NaN, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element

var out0 = new Float64Array( 4 );
var out1 = new Float64Array( out0.buffer, out0.BYTES_PER_ELEMENT*2 ); // start at 3rd element

var v = dnannsumors( 4, x1, 2, out1, 1 );
// returns <Float64Array>[ 5.0, 4 ]

dnannsumors.ndarray( N, x, strideX, offsetX, out, strideOut, offsetOut )

Computes the sum of double-precision floating-point strided array elements, ignoring NaN values and using ordinary recursive summation and alternative indexing semantics.

var Float64Array = require( '@stdlib/array-float64' );

var x = new Float64Array( [ 1.0, -2.0, NaN, 2.0 ] );
var out = new Float64Array( 2 );

var v = dnannsumors.ndarray( x.length, x, 1, 0, out, 1, 0 );
// returns <Float64Array>[ 1.0, 3 ]

The function has the following additional parameters:

  • offsetX: starting index for x.
  • offsetOut: starting index for out.

While typed array views mandate a view offset based on the underlying buffer, the offset parameter supports indexing semantics based on a starting index. For example, to calculate the sum of every other value in x starting from the second value

var Float64Array = require( '@stdlib/array-float64' );

var x = new Float64Array( [ 2.0, 1.0, NaN, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var out = new Float64Array( 4 );

var v = dnannsumors.ndarray( 4, x, 2, 1, out, 2, 1 );
// returns <Float64Array>[ 0.0, 5.0, 0.0, 4 ]

Notes

  • If N <= 0, both functions return a sum equal to 0.0.
  • Ordinary recursive summation (i.e., a "simple" sum) is performant, but can incur significant numerical error. If performance is paramount and error tolerated, using ordinary recursive summation is acceptable; in all other cases, exercise due caution.

Examples

var discreteUniform = require( '@stdlib/random-base-discrete-uniform' );
var bernoulli = require( '@stdlib/random-base-bernoulli' );
var Float64Array = require( '@stdlib/array-float64' );

var filledarrayBy = require( '@stdlib/array-filled-by' );
var dnannsumors = require( '@stdlib/blas-ext-base-dnannsumors' );

function rand() {
    if ( bernoulli( 0.8 ) > 0 ) {
        return discreteUniform( 0, 100 );
    }
    return NaN;
}

var x = filledarrayBy( 10, 'float64', rand );
console.log( x );

var out = new Float64Array( 2 );
dnannsumors( x.length, x, 1, out, 1 );
console.log( out );

See Also

  • @stdlib/blas-ext/base/dnannsum: calculate the sum of double-precision floating-point strided array elements, ignoring NaN values.
  • @stdlib/blas-ext/base/dnannsumkbn: calculate the sum of double-precision floating-point strided array elements, ignoring NaN values and using an improved Kahan–Babuška algorithm.
  • @stdlib/blas-ext/base/dnannsumkbn2: calculate the sum of double-precision floating-point strided array elements, ignoring NaN values and using a second-order iterative Kahan–Babuška algorithm.
  • @stdlib/blas-ext/base/dnannsumpw: calculate the sum of double-precision floating-point strided array elements, ignoring NaN values and using pairwise summation.
  • @stdlib/blas-ext/base/dsumors: calculate the sum of double-precision floating-point strided array elements using ordinary recursive summation.

Notice

This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.

Community

Chat


License

See LICENSE.

Copyright

Copyright © 2016-2024. The Stdlib Authors.