npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

@stdlib/blas-ext-base-dcusumkbn

v0.2.2

Published

Calculate the cumulative sum of double-precision floating-point strided array elements using an improved Kahan–Babuška algorithm.

Downloads

52

Readme

dcusumkbn

NPM version Build Status Coverage Status

Calculate the cumulative sum of double-precision floating-point strided array elements using an improved Kahan–Babuška algorithm.

Installation

npm install @stdlib/blas-ext-base-dcusumkbn

Usage

var dcusumkbn = require( '@stdlib/blas-ext-base-dcusumkbn' );

dcusumkbn( N, sum, x, strideX, y, strideY )

Computes the cumulative sum of double-precision floating-point strided array elements using an improved Kahan–Babuška algorithm.

var Float64Array = require( '@stdlib/array-float64' );

var x = new Float64Array( [ 1.0, -2.0, 2.0 ] );
var y = new Float64Array( x.length );

dcusumkbn( x.length, 0.0, x, 1, y, 1 );
// y => <Float64Array>[ 1.0, -1.0, 1.0 ]

x = new Float64Array( [ 1.0, -2.0, 2.0 ] );
y = new Float64Array( x.length );

dcusumkbn( x.length, 10.0, x, 1, y, 1 );
// y => <Float64Array>[ 11.0, 9.0, 11.0 ]

The function has the following parameters:

  • N: number of indexed elements.
  • sum: initial sum.
  • x: input Float64Array.
  • strideX: index increment for x.
  • y: output Float64Array.
  • strideY: index increment for y.

The N and stride parameters determine which elements in the strided arrays are accessed at runtime. For example, to compute the cumulative sum of every other element in the strided input array,

var Float64Array = require( '@stdlib/array-float64' );

var x = new Float64Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0 ] );
var y = new Float64Array( x.length );

var v = dcusumkbn( 4, 0.0, x, 2, y, 1 );
// y => <Float64Array>[ 1.0, 3.0, 1.0, 5.0, 0.0, 0.0, 0.0, 0.0 ]

Note that indexing is relative to the first index. To introduce an offset, use typed array views.

var Float64Array = require( '@stdlib/array-float64' );

// Initial arrays...
var x0 = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var y0 = new Float64Array( x0.length );

// Create offset views...
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var y1 = new Float64Array( y0.buffer, y0.BYTES_PER_ELEMENT*3 ); // start at 4th element

dcusumkbn( 4, 0.0, x1, -2, y1, 1 );
// y0 => <Float64Array>[ 0.0, 0.0, 0.0, 4.0, 6.0, 4.0, 5.0, 0.0 ]

dcusumkbn.ndarray( N, sum, x, strideX, offsetX, y, strideY, offsetY )

Computes the cumulative sum of double-precision floating-point strided array elements using an improved Kahan–Babuška algorithm and alternative indexing semantics.

var Float64Array = require( '@stdlib/array-float64' );

var x = new Float64Array( [ 1.0, -2.0, 2.0 ] );
var y = new Float64Array( x.length );

dcusumkbn.ndarray( x.length, 0.0, x, 1, 0, y, 1, 0 );
// y => <Float64Array>[ 1.0, -1.0, 1.0 ]

The function has the following additional parameters:

  • offsetX: starting index for x.
  • offsetY: starting index for y.

While typed array views mandate a view offset based on the underlying buffer, offsetX and offsetY parameters support indexing semantics based on a starting indices. For example, to calculate the cumulative sum of every other value in the strided input array starting from the second value and to store in the last N elements of the strided output array starting from the last element

var Float64Array = require( '@stdlib/array-float64' );

var x = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var y = new Float64Array( x.length );

dcusumkbn.ndarray( 4, 0.0, x, 2, 1, y, -1, y.length-1 );
// y => <Float64Array>[ 0.0, 0.0, 0.0, 0.0, 5.0, 1.0, -1.0, 1.0 ]

Notes

  • If N <= 0, both functions return y unchanged.

Examples

var discreteUniform = require( '@stdlib/random-base-discrete-uniform' ).factory;
var filledarrayBy = require( '@stdlib/array-filled-by' );
var Float64Array = require( '@stdlib/array-float64' );
var dcusumkbn = require( '@stdlib/blas-ext-base-dcusumkbn' );

var x = filledarrayBy( 10, 'float64', discreteUniform( 0, 100 ) );
var y = new Float64Array( x.length );

console.log( x );
console.log( y );

dcusumkbn( x.length, 0.0, x, 1, y, -1 );
console.log( y );

References

  • Neumaier, Arnold. 1974. "Rounding Error Analysis of Some Methods for Summing Finite Sums." Zeitschrift Für Angewandte Mathematik Und Mechanik 54 (1): 39–51. doi:10.1002/zamm.19740540106.

See Also


Notice

This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.

Community

Chat


License

See LICENSE.

Copyright

Copyright © 2016-2024. The Stdlib Authors.