@stdlib/blas-ext-base
v0.2.1
Published
Extended base (i.e., lower-level) basic linear algebra subroutines (BLAS).
Downloads
4
Readme
Extended BLAS
Base (i.e., lower-level) extensions to basic linear algebra subprograms (BLAS).
Installation
npm install @stdlib/blas-ext-base
Usage
var extblas = require( '@stdlib/blas-ext-base' );
extblas
Namespace for "base" (i.e., lower-level) extensions to basic linear algebra subprograms (BLAS).
var ns = extblas;
// returns {...}
dapx( N, alpha, x, stride )
: add a constant to each element in a double-precision floating-point strided array.dapxsum( N, alpha, x, stride )
: add a constant to each double-precision floating-point strided array element and compute the sum.dapxsumkbn( N, alpha, x, stride )
: add a constant to each double-precision floating-point strided array element and compute the sum using an improved Kahan–Babuška algorithm.dapxsumkbn2( N, alpha, x, stride )
: add a constant to each double-precision floating-point strided array element and compute the sum using a second-order iterative Kahan–Babuška algorithm.dapxsumors( N, alpha, x, stride )
: add a constant to each double-precision floating-point strided array element and compute the sum using ordinary recursive summation.dapxsumpw( N, alpha, x, stride )
: add a constant to each double-precision floating-point strided array element and compute the sum using pairwise summation.dasumpw( N, x, stride )
: calculate the sum of absolute values (L1 norm) of double-precision floating-point strided array elements using pairwise summation.dcusum( N, sum, x, strideX, y, strideY )
: calculate the cumulative sum of double-precision floating-point strided array elements.dcusumkbn( N, sum, x, strideX, y, strideY )
: calculate the cumulative sum of double-precision floating-point strided array elements using an improved Kahan–Babuška algorithm.dcusumkbn2( N, sum, x, strideX, y, strideY )
: calculate the cumulative sum of double-precision floating-point strided array elements using a second-order iterative Kahan–Babuška algorithm.dcusumors( N, sum, x, strideX, y, strideY )
: calculate the cumulative sum of double-precision floating-point strided array elements using ordinary recursive summation.dcusumpw( N, sum, x, strideX, y, strideY )
: calculate the cumulative sum of double-precision floating-point strided array elements using pairwise summation.dfill( N, alpha, x, stride )
: fill a double-precision floating-point strided array with a specified scalar constant.dnanasum( N, x, stride )
: calculate the sum of absolute values (L1 norm) of double-precision floating-point strided array elements, ignoringNaN
values.dnanasumors( N, x, stride )
: calculate the sum of absolute values (L1 norm) of double-precision floating-point strided array elements, ignoringNaN
values and using ordinary recursive summation.dnannsum( N, x, strideX, out, strideOut )
: calculate the sum of double-precision floating-point strided array elements, ignoringNaN
values.dnannsumkbn( N, x, strideX, out, strideOut )
: calculate the sum of double-precision floating-point strided array elements, ignoringNaN
values and using an improved Kahan–Babuška algorithm.dnannsumkbn2( N, x, strideX, out, strideOut )
: calculate the sum of double-precision floating-point strided array elements, ignoringNaN
values and using a second-order iterative Kahan–Babuška algorithm.dnannsumors( N, x, strideX, out, strideOut )
: calculate the sum of double-precision floating-point strided array elements, ignoringNaN
values and using ordinary recursive summation.dnannsumpw( N, x, strideX, out, strideOut )
: calculate the sum of double-precision floating-point strided array elements, ignoringNaN
values and using pairwise summation.dnansum( N, x, stride )
: calculate the sum of double-precision floating-point strided array elements, ignoringNaN
values.dnansumkbn( N, x, stride )
: calculate the sum of double-precision floating-point strided array elements, ignoringNaN
values and using an improved Kahan–Babuška algorithm.dnansumkbn2( N, x, stride )
: calculate the sum of double-precision floating-point strided array elements, ignoringNaN
values and using a second-order iterative Kahan–Babuška algorithm.dnansumors( N, x, stride )
: calculate the sum of double-precision floating-point strided array elements, ignoringNaN
values and using ordinary recursive summation.dnansumpw( N, x, stride )
: calculate the sum of double-precision floating-point strided array elements, ignoringNaN
values and using pairwise summation.drev( N, x, stride )
: reverse a double-precision floating-point strided array in-place.dsapxsum( N, alpha, x, stride )
: add a constant to each single-precision floating-point strided array element and compute the sum using extended accumulation and returning an extended precision result.dsapxsumpw( N, alpha, x, stride )
: add a constant to each single-precision floating-point strided array element and compute the sum using pairwise summation with extended accumulation and returning an extended precision result.dsnannsumors( N, x, strideX, out, strideOut )
: calculate the sum of single-precision floating-point strided array elements, ignoringNaN
values, using ordinary recursive summation with extended accumulation, and returning an extended precision result.dsnansum( N, x, stride )
: calculate the sum of single-precision floating-point strided array elements, ignoringNaN
values, using extended accumulation, and returning an extended precision result.dsnansumors( N, x, stride )
: calculate the sum of single-precision floating-point strided array elements, ignoringNaN
values, using ordinary recursive summation with extended accumulation, and returning an extended precision result.dsnansumpw( N, x, stride )
: calculate the sum of single-precision floating-point strided array elements, ignoringNaN
values, using pairwise summation with extended accumulation, and returning an extended precision result.dsort2hp( N, order, x, strideX, y, strideY )
: simultaneously sort two double-precision floating-point strided arrays based on the sort order of the first array using heapsort.dsort2ins( N, order, x, strideX, y, strideY )
: simultaneously sort two double-precision floating-point strided arrays based on the sort order of the first array using insertion sort.dsort2sh( N, order, x, strideX, y, strideY )
: simultaneously sort two double-precision floating-point strided arrays based on the sort order of the first array using Shellsort.dsorthp( N, order, x, stride )
: sort a double-precision floating-point strided array using heapsort.dsortins( N, order, x, stride )
: sort a double-precision floating-point strided array using insertion sort.dsortsh( N, order, x, stride )
: sort a double-precision floating-point strided array using Shellsort.dssum( N, x, stride )
: calculate the sum of single-precision floating-point strided array elements using extended accumulation and returning an extended precision result.dssumors( N, x, stride )
: calculate the sum of single-precision floating-point strided array elements using ordinary recursive summation with extended accumulation and returning an extended precision result.dssumpw( N, x, stride )
: calculate the sum of single-precision floating-point strided array elements using pairwise summation with extended accumulation and returning an extended precision result.dsum( N, x, stride )
: calculate the sum of double-precision floating-point strided array elements.dsumkbn( N, x, stride )
: calculate the sum of double-precision floating-point strided array elements using an improved Kahan–Babuška algorithm.dsumkbn2( N, x, stride )
: calculate the sum of double-precision floating-point strided array elements using a second-order iterative Kahan–Babuška algorithm.dsumors( N, x, stride )
: calculate the sum of double-precision floating-point strided array elements using ordinary recursive summation.dsumpw( N, x, stride )
: calculate the sum of double-precision floating-point strided array elements using pairwise summation.gapx( N, alpha, x, stride )
: add a constant to each element in a strided array.gapxsum( N, alpha, x, stride )
: add a constant to each strided array element and compute the sum.gapxsumkbn( N, alpha, x, stride )
: add a constant to each strided array element and compute the sum using an improved Kahan–Babuška algorithm.gapxsumkbn2( N, alpha, x, stride )
: add a constant to each strided array element and compute the sum using a second-order iterative Kahan–Babuška algorithm.gapxsumors( N, alpha, x, stride )
: add a constant to each strided array element and compute the sum using ordinary recursive summation.gapxsumpw( N, alpha, x, stride )
: add a constant to each strided array element and compute the sum using pairwise summation.gasumpw( N, x, stride )
: calculate the sum of absolute values (L1 norm) of strided array elements using pairwise summation.gcusum( N, sum, x, strideX, y, strideY )
: calculate the cumulative sum of strided array elements.gcusumkbn( N, sum, x, strideX, y, strideY )
: calculate the cumulative sum of strided array elements using an improved Kahan–Babuška algorithm.gcusumkbn2( N, sum, x, strideX, y, strideY )
: calculate the cumulative sum of strided array elements using a second-order iterative Kahan–Babuška algorithm.gcusumors( N, sum, x, strideX, y, strideY )
: calculate the cumulative sum of strided array elements using ordinary recursive summation.gcusumpw( N, sum, x, strideX, y, strideY )
: calculate the cumulative sum of strided array elements using pairwise summation.gfillBy( N, x, stride, clbk[, thisArg] )
: fill a strided array according to a provided callback function.gfill( N, alpha, x, stride )
: fill a strided array with a specified scalar constant.gnannsumkbn( N, x, strideX, out, strideOut )
: calculate the sum of strided array elements, ignoringNaN
values and using an improved Kahan–Babuška algorithm.gnansum( N, x, stride )
: calculate the sum of strided array elements, ignoringNaN
values.gnansumkbn( N, x, stride )
: calculate the sum of strided array elements, ignoringNaN
values and using an improved Kahan–Babuška algorithm.gnansumkbn2( N, x, stride )
: calculate the sum of strided array elements, ignoringNaN
values and using a second-order iterative Kahan–Babuška algorithm.gnansumors( N, x, stride )
: calculate the sum of strided array elements, ignoringNaN
values and using ordinary recursive summation.gnansumpw( N, x, stride )
: calculate the sum of strided array elements, ignoringNaN
values and using pairwise summation.grev( N, x, stride )
: reverse a strided array in-place.gsort2hp( N, order, x, strideX, y, strideY )
: simultaneously sort two strided arrays based on the sort order of the first array using heapsort.gsort2ins( N, order, x, strideX, y, strideY )
: simultaneously sort two strided arrays based on the sort order of the first array using insertion sort.gsort2sh( N, order, x, strideX, y, strideY )
: simultaneously sort two strided arrays based on the sort order of the first array using Shellsort.gsorthp( N, order, x, stride )
: sort a strided array using heapsort.gsortins( N, order, x, stride )
: sort a strided array using insertion sort.gsortsh( N, order, x, stride )
: sort a strided array using Shellsort.gsum( N, x, stride )
: calculate the sum of strided array elements.gsumkbn( N, x, stride )
: calculate the sum of strided array elements using an improved Kahan–Babuška algorithm.gsumkbn2( N, x, stride )
: calculate the sum of strided array elements using a second-order iterative Kahan–Babuška algorithm.gsumors( N, x, stride )
: calculate the sum of strided array elements using ordinary recursive summation.gsumpw( N, x, stride )
: calculate the sum of strided array elements using pairwise summation.sapx( N, alpha, x, stride )
: add a constant to each element in a single-precision floating-point strided array.sapxsum( N, alpha, x, stride )
: add a constant to each single-precision floating-point strided array element and compute the sum.sapxsumkbn( N, alpha, x, stride )
: add a constant to each single-precision floating-point strided array element and compute the sum using an improved Kahan–Babuška algorithm.sapxsumkbn2( N, alpha, x, stride )
: add a constant to each single-precision floating-point strided array element and compute the sum using a second-order iterative Kahan–Babuška algorithm.sapxsumors( N, alpha, x, stride )
: add a constant to each single-precision floating-point strided array element and compute the sum using ordinary recursive summation.sapxsumpw( N, alpha, x, stride )
: add a constant to each single-precision floating-point strided array element and compute the sum using pairwise summation.sasumpw( N, x, stride )
: calculate the sum of absolute values (L1 norm) of single-precision floating-point strided array elements using pairwise summation.scusum( N, sum, x, strideX, y, strideY )
: calculate the cumulative sum of single-precision floating-point strided array elements.scusumkbn( N, sum, x, strideX, y, strideY )
: calculate the cumulative sum of single-precision floating-point strided array elements using an improved Kahan–Babuška algorithm.scusumkbn2( N, sum, x, strideX, y, strideY )
: calculate the cumulative sum of single-precision floating-point strided array elements using a second-order iterative Kahan–Babuška algorithm.scusumors( N, sum, x, strideX, y, strideY )
: calculate the cumulative sum of single-precision floating-point strided array elements using ordinary recursive summation.scusumpw( N, sum, x, strideX, y, strideY )
: calculate the cumulative sum of single-precision floating-point strided array elements using pairwise summation.sdsapxsum( N, alpha, x, stride )
: add a constant to each single-precision floating-point strided array element and compute the sum using extended accumulation.sdsapxsumpw( N, alpha, x, stride )
: add a constant to each single-precision floating-point strided array element and compute the sum using pairwise summation with extended accumulation.sdsnansum( N, x, stride )
: calculate the sum of single-precision floating-point strided array elements, ignoringNaN
values and using extended accumulation.sdsnansumpw( N, x, stride )
: calculate the sum of single-precision floating-point strided array elements, ignoringNaN
values and using pairwise summation with extended accumulation.sdssum( N, x, stride )
: calculate the sum of single-precision floating-point strided array elements using extended accumulation.sdssumpw( N, x, stride )
: calculate the sum of single-precision floating-point strided array elements using pairwise summation with extended accumulation.sfill( N, alpha, x, stride )
: fill a single-precision floating-point strided array with a specified scalar constant.snansum( N, x, stride )
: calculate the sum of single-precision floating-point strided array elements, ignoringNaN
values.snansumkbn( N, x, stride )
: calculate the sum of single-precision floating-point strided array elements, ignoringNaN
values and using an improved Kahan–Babuška algorithm.snansumkbn2( N, x, stride )
: calculate the sum of single-precision floating-point strided array elements, ignoringNaN
values and using a second-order iterative Kahan–Babuška algorithm.snansumors( N, x, stride )
: calculate the sum of single-precision floating-point strided array elements, ignoringNaN
values and using ordinary recursive summation.snansumpw( N, x, stride )
: calculate the sum of single-precision floating-point strided array elements, ignoringNaN
values and using pairwise summation.srev( N, x, stride )
: reverse a single-precision floating-point strided array in-place.ssort2hp( N, order, x, strideX, y, strideY )
: simultaneously sort two single-precision floating-point strided arrays based on the sort order of the first array using heapsort.ssort2ins( N, order, x, strideX, y, strideY )
: simultaneously sort two single-precision floating-point strided arrays based on the sort order of the first array using insertion sort.ssort2sh( N, order, x, strideX, y, strideY )
: simultaneously sort two single-precision floating-point strided arrays based on the sort order of the first array using Shellsort.ssorthp( N, order, x, stride )
: sort a single-precision floating-point strided array using heapsort.ssortins( N, order, x, stride )
: sort a single-precision floating-point strided array using insertion sort.ssortsh( N, order, x, stride )
: sort a single-precision floating-point strided array using Shellsort.ssum( N, x, stride )
: calculate the sum of single-precision floating-point strided array elements.ssumkbn( N, x, stride )
: calculate the sum of single-precision floating-point strided array elements using an improved Kahan–Babuška algorithm.ssumkbn2( N, x, stride )
: calculate the sum of single-precision floating-point strided array elements using a second-order iterative Kahan–Babuška algorithm.ssumors( N, x, stride )
: calculate the sum of single-precision floating-point strided array elements using ordinary recursive summation.ssumpw( N, x, stride )
: calculate the sum of single-precision floating-point strided array elements using pairwise summation.
Examples
var objectKeys = require( '@stdlib/utils-keys' );
var ns = require( '@stdlib/blas-ext-base' );
console.log( objectKeys( ns ) );
Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
License
See LICENSE.
Copyright
Copyright © 2016-2024. The Stdlib Authors.