@stdlib/blas-base-gscal
v0.2.2
Published
Multiply a vector by a constant.
Downloads
96
Readme
gscal
Multiply a vector
x
by a constantalpha
.
Installation
npm install @stdlib/blas-base-gscal
Usage
var gscal = require( '@stdlib/blas-base-gscal' );
gscal( N, alpha, x, stride )
Multiplies a vector x
by a constant alpha
.
var x = [ -2.0, 1.0, 3.0, -5.0, 4.0, 0.0, -1.0, -3.0 ];
gscal( x.length, 5.0, x, 1 );
// x => [ -10.0, 5.0, 15.0, -25.0, 20.0, 0.0, -5.0, -15.0 ]
The function has the following parameters:
- N: number of indexed elements.
- alpha: scalar constant.
- x: input
Array
ortyped array
. - stride: index increment.
The N
and stride
parameters determine which elements in x
are accessed at runtime. For example, to multiply every other value by a constant
var x = [ -2.0, 1.0, 3.0, -5.0, 4.0, 0.0, -1.0, -3.0 ];
gscal( 4, 5.0, x, 2 );
// x => [ -10.0, 1.0, 15.0, -5.0, 20.0, 0.0, -5.0, -3.0 ]
Note that indexing is relative to the first index. To introduce an offset, use typed array
views.
var Float64Array = require( '@stdlib/array-float64' );
// Initial array:
var x0 = new Float64Array( [ 1.0, -2.0, 3.0, -4.0, 5.0, -6.0 ] );
// Create an offset view:
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
// Scale every other value:
gscal( 3, 5.0, x1, 2 );
// x0 => <Float64Array>[ 1.0, -10.0, 3.0, -20.0, 5.0, -30.0 ]
If either N
or stride
is less than or equal to 0
, the function returns x
unchanged.
gscal.ndarray( N, alpha, x, stride, offset )
Multiplies a vector x
by a constant alpha
using alternative indexing semantics.
var x = [ -2.0, 1.0, 3.0, -5.0, 4.0, 0.0, -1.0, -3.0 ];
gscal.ndarray( x.length, 5.0, x, 1, 0 );
// x => [ -10.0, 5.0, 15.0, -25.0, 20.0, 0.0, -5.0, -15.0 ]
The function has the following additional parameters:
- offset: starting index.
While typed array
views mandate a view offset based on the underlying buffer, the offset
parameter supports indexing semantics based on a starting index. For example, to multiply the last three elements of x
by a constant
var x = [ 1.0, -2.0, 3.0, -4.0, 5.0, -6.0 ];
gscal.ndarray( 3, 5.0, x, 1, x.length-3 );
// x => [ 1.0, -2.0, 3.0, -20.0, 25.0, -30.0 ]
Notes
- If
N <= 0
, both functions returnx
unchanged. gscal()
corresponds to the BLAS level 1 functiondscal
with the exception that this implementation works with any array type, not just Float64Arrays. Depending on the environment, the typed versions (dscal
,sscal
, etc.) are likely to be significantly more performant.
Examples
var discreteUniform = require( '@stdlib/random-array-discrete-uniform' );
var gscal = require( '@stdlib/blas-base-gscal' );
var opts = {
'dtype': 'float64'
};
var x = discreteUniform( 10, -100, 100, opts );
console.log( x );
gscal( x.length, 5.0, x, 1 );
console.log( x );
See Also
@stdlib/blas-base/dscal
: multiply a double-precision floating-point vector by a constant.@stdlib/blas-base/gaxpy
: multiply x by a constant and add the result to y.@stdlib/blas-base/sscal
: multiply a single-precision floating-point vector by a constant.
Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
License
See LICENSE.
Copyright
Copyright © 2016-2024. The Stdlib Authors.