@stdlib/blas-base-drot
v0.0.2
Published
Apply a plane rotation.
Downloads
20
Readme
drot
Apply a plane rotation.
This BLAS level 1 routine applies a real plane rotation to real double-precision floating-point vectors. The plane rotation is applied to N
points, where the points to be rotated are contained in vectors x
and y
and where the cosine and sine of the angle of rotation are c
and s
, respectively. The operation is as follows:
where x_i
and y_i
are the individual elements on which the rotation is applied.
Installation
npm install @stdlib/blas-base-drot
Usage
var drot = require( '@stdlib/blas-base-drot' );
drot( N, x, strideX, y, strideY, c, s )
Applies a plane rotation.
var Float64Array = require( '@stdlib/array-float64' );
var x = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0 ] );
var y = new Float64Array( [ 6.0, 7.0, 8.0, 9.0, 10.0 ] );
drot( x.length, x, 1, y, 1, 0.8, 0.6 );
// x => <Float64Array>[ ~4.4, ~5.8, 7.2, 8.6, 10.0 ]
// y => <Float64Array>[ ~4.2, 4.4, 4.6, 4.8, 5.0 ]
The function has the following parameters:
- N: number of indexed elements.
- x: first input
Float64Array
. - strideX: index increment for
x
. - y: second input
Float64Array
. - strideY: index increment for
y
. - c: cosine of the angle of rotation.
- s: sine of the angle of rotation.
The N
and stride parameters determine how values in the strided arrays are accessed at runtime. For example, to apply a plane rotation to every other element,
var Float64Array = require( '@stdlib/array-float64' );
var x = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
var y = new Float64Array( [ 7.0, 8.0, 9.0, 10.0, 11.0, 12.0 ] );
drot( 3, x, 2, y, 2, 0.8, 0.6 );
// x => <Float64Array>[ 5.0, 2.0, 7.8, 4.0, 10.6, 6.0 ]
// y => <Float64Array>[ ~5.0, 8.0, 5.4, 10.0, ~5.8, 12.0 ]
Note that indexing is relative to the first index. To introduce an offset, use typed array
views.
var Float64Array = require( '@stdlib/array-float64' );
// Initial arrays...
var x0 = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
var y0 = new Float64Array( [ 7.0, 8.0, 9.0, 10.0, 11.0, 12.0 ] );
// Create offset views...
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var y1 = new Float64Array( y0.buffer, y0.BYTES_PER_ELEMENT*3 ); // start at 4th element
drot( 3, x1, -2, y1, 1, 0.8, 0.6 );
// x0 => <Float64Array>[ 1.0, ~8.8, 3.0, 9.8, 5.0, 10.8 ]
// y0 => <Float64Array>[ 7.0, 8.0, 9.0, 4.4, 6.4, ~8.4 ]
drot.ndarray( N, x, strideX, offsetX, y, strideY, offsetY, c, s )
Applies a plane rotation using alternative indexing semantics.
var Float64Array = require( '@stdlib/array-float64' );
var x = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0 ] );
var y = new Float64Array( [ 6.0, 7.0, 8.0, 9.0, 10.0 ] );
drot.ndarray( 4, x, 1, 1, y, 1, 1, 0.8, 0.6 );
// x => <Float64Array>[ 1.0, ~5.8, 7.2, 8.6, 10.0 ]
// y => <Float64Array>[ 6.0, 4.4, ~4.6, ~4.8, 5.0 ]
The function has the following additional parameters:
- offsetX: starting index for
x
. - offsetY: starting index for
y
.
While typed array
views mandate a view offset based on the underlying buffer, the offset parameters support indexing semantics based on starting indices. For example, to apply a plane rotation to every other element starting from the second element,
var Float64Array = require( '@stdlib/array-float64' );
var x = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
var y = new Float64Array( [ 7.0, 8.0, 9.0, 10.0, 11.0, 12.0 ] );
drot.ndarray( 3, x, 2, 1, y, 2, 1, 0.8, 0.6 );
// x => <Float64Array>[ 1.0, 6.4, 3.0, 9.2, 5.0, 12.0 ]
// y => <Float64Array>[ 7.0, 5.2, 9.0, 5.6, 11.0, ~6.0 ]
Notes
- If
N <= 0
, both functions leavex
andy
unchanged. drot()
corresponds to the BLAS level 1 functiondrot
.
Examples
var discreteUniform = require( '@stdlib/random-array-discrete-uniform' );
var drot = require( '@stdlib/blas-base-drot' );
var opts = {
'dtype': 'float64'
};
var x = discreteUniform( 10, 0, 500, opts );
console.log( x );
var y = discreteUniform( x.length, 0, 255, opts );
console.log( y );
// Apply a plane rotation:
drot( x.length, x, 1, y, 1, 0.8, 0.6 );
console.log( x );
console.log( y );
C APIs
Usage
#include "stdlib/blas/base/drot.h"
c_drot( N, *X, strideX, *Y, strideY, c, s )
Applies a plane rotation.
double x[] = { 1.0, 2.0, 3.0, 4.0, 5.0 };
double y[] = { 6.0, 7.0, 8.0, 9.0, 10.0 };
c_drot( 5, x, 1, y, 1, 0.8, 0.6 );
The function accepts the following arguments:
- N:
[in] CBLAS_INT
number of indexed elements. - X:
[inout] double*
first input array. - strideX:
[in] CBLAS_INT
index increment forX
. - Y:
[inout] double*
second input array. - strideY:
[in] CBLAS_INT
index increment forY
. - c:
[in] double
cosine of the angle of rotation. - s:
[in] double
sine of the angle of rotation.
void c_drot( const CBLAS_INT N, double *X, const CBLAS_INT strideX, double *Y, const CBLAS_INT strideY, const double c, const double s );
Examples
#include "stdlib/blas/base/drot.h"
#include <stdio.h>
int main( void ) {
// Create strided arrays:
double x[] = { 1.0, 2.0, 3.0, 4.0, 5.0 };
double y[] = { 6.0, 7.0, 8.0, 9.0, 10.0 };
// Specify the number of elements:
const int N = 5;
// Specify stride lengths:
const int strideX = 1;
const int strideY = 1;
// Specify angle of rotation:
const double c = 0.8;
const double s = 0.6;
// Apply plane rotation:
c_drot( N, x, strideX, y, strideY, c, s );
// Print the result:
for ( int i = 0; i < 5; i++ ) {
printf( "x[ %i ] = %lf, y[ %i ] = %lf\n", i, x[ i ], i, y[ i ] );
}
}
Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
License
See LICENSE.
Copyright
Copyright © 2016-2024. The Stdlib Authors.