@stdlib/blas-base-ddot
v0.3.0
Published
Calculate the dot product of two double-precision floating-point vectors.
Downloads
740
Readme
ddot
Calculate the dot product of two double-precision floating-point vectors.
The dot product (or scalar product) is defined as
Installation
npm install @stdlib/blas-base-ddot
Usage
var ddot = require( '@stdlib/blas-base-ddot' );
ddot( N, x, strideX, y, strideY )
Calculates the dot product of vectors x
and y
.
var Float64Array = require( '@stdlib/array-float64' );
var x = new Float64Array( [ 4.0, 2.0, -3.0, 5.0, -1.0 ] );
var y = new Float64Array( [ 2.0, 6.0, -1.0, -4.0, 8.0 ] );
var z = ddot( x.length, x, 1, y, 1 );
// returns -5.0
The function has the following parameters:
- N: number of indexed elements.
- x: input
Float64Array
. - strideX: index increment for
x
. - y: input
Float64Array
. - strideY: index increment for
y
.
The N
and strides parameters determine which elements in the strided arrays are accessed at runtime. For example, to calculate the dot product of every other value in x
and the first N
elements of y
in reverse order,
var Float64Array = require( '@stdlib/array-float64' );
var x = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
var y = new Float64Array( [ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 ] );
var z = ddot( 3, x, 2, y, -1 );
// returns 9.0
Note that indexing is relative to the first index. To introduce an offset, use typed array
views.
var Float64Array = require( '@stdlib/array-float64' );
// Initial arrays...
var x0 = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
var y0 = new Float64Array( [ 7.0, 8.0, 9.0, 10.0, 11.0, 12.0 ] );
// Create offset views...
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var y1 = new Float64Array( y0.buffer, y0.BYTES_PER_ELEMENT*3 ); // start at 4th element
var z = ddot( 3, x1, -2, y1, 1 );
// returns 128.0
ddot.ndarray( N, x, strideX, offsetX, y, strideY, offsetY )
Calculates the dot product of x
and y
using alternative indexing semantics.
var Float64Array = require( '@stdlib/array-float64' );
var x = new Float64Array( [ 4.0, 2.0, -3.0, 5.0, -1.0 ] );
var y = new Float64Array( [ 2.0, 6.0, -1.0, -4.0, 8.0 ] );
var z = ddot.ndarray( x.length, x, 1, 0, y, 1, 0 );
// returns -5.0
The function has the following additional parameters:
- offsetX: starting index for
x
. - offsetY: starting index for
y
.
While typed array
views mandate a view offset based on the underlying buffer, the offset parameters support indexing semantics based on starting indices. For example, to calculate the dot product of every other value in x
starting from the second value with the last 3 elements in y
in reverse order
var Float64Array = require( '@stdlib/array-float64' );
var x = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
var y = new Float64Array( [ 7.0, 8.0, 9.0, 10.0, 11.0, 12.0 ] );
var z = ddot.ndarray( 3, x, 2, 1, y, -1, y.length-1 );
// returns 128.0
Notes
Examples
var discreteUniform = require( '@stdlib/random-array-discrete-uniform' );
var ddot = require( '@stdlib/blas-base-ddot' );
var opts = {
'dtype': 'float64'
};
var x = discreteUniform( 10, 0, 100, opts );
console.log( x );
var y = discreteUniform( x.length, 0, 10, opts );
console.log( y );
var out = ddot.ndarray( x.length, x, 1, 0, y, -1, y.length-1 );
console.log( out );
C APIs
Usage
#include "stdlib/blas/base/ddot.h"
c_ddot( N, *X, strideX, *Y, strideY )
Computes the dot product of two double-precision floating-point vectors.
const double x[] = { 4.0, 2.0, -3.0, 5.0, -1.0 };
const double y[] = { 2.0, 6.0, -1.0, -4.0, 8.0 };
double v = c_ddot( 5, x, 1, y, 1 );
// returns -5.0
The function accepts the following arguments:
- N:
[in] CBLAS_INT
number of indexed elements. - X:
[in] double*
first input array. - strideX:
[in] CBLAS_INT
index increment forX
. - Y:
[in] double*
second input array. - strideY:
[in] CBLAS_INT
index increment forY
.
double c_ddot( const CBLAS_INT N, const double *X, const CBLAS_INT strideX, const double *Y, const CBLAS_INT strideY );
Examples
#include "stdlib/blas/base/ddot.h"
#include <stdio.h>
int main( void ) {
// Create strided arrays:
const double x[] = { 1.0, -2.0, 3.0, -4.0, 5.0, -6.0, 7.0, -8.0 };
const double y[] = { 1.0, -2.0, 3.0, -4.0, 5.0, -6.0, 7.0, -8.0 };
// Specify the number of elements:
const int N = 8;
// Specify strides:
const int strideX = 1;
const int strideY = -1;
// Compute the dot product:
double d = c_ddot( N, x, strideX, y, strideY );
// Print the result:
printf( "dot product: %lf\n", d );
}
See Also
@stdlib/blas-base/dsdot
: calculate the dot product with extended accumulation and result of two single-precision floating-point vectors.@stdlib/blas-base/gdot
: calculate the dot product of two vectors.@stdlib/blas-base/sdot
: calculate the dot product of two single-precision floating-point vectors.@stdlib/blas-base/sdsdot
: calculate the dot product of two single-precision floating-point vectors with extended accumulation.@stdlib/blas-ddot
: calculate the dot product of two double-precision floating-point vectors.
Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
License
See LICENSE.
Copyright
Copyright © 2016-2024. The Stdlib Authors.