npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

@stdlib/blas-base-csrot

v0.1.0

Published

Apply a plane rotation.

Downloads

2

Readme

csrot

NPM version Build Status Coverage Status

Applies a plane rotation.

Installation

npm install @stdlib/blas-base-csrot

Usage

var csrot = require( '@stdlib/blas-base-csrot' );

csrot( N, cx, strideX, cy, strideY, c, s )

Applies a plane rotation.

var Complex64Array = require( '@stdlib/array-complex64' );
var realf = require( '@stdlib/complex-float32-real' );
var imagf = require( '@stdlib/complex-float32-imag' );

var cx = new Complex64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] );
var cy = new Complex64Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );

csrot( cx.length, cx, 1, cy, 1, 0.8, 0.6 );

var z = cy.get( 0 );
// returns <Complex64>

var re = realf( z );
// returns ~-0.6

var im = imagf( z );
// returns ~-1.2

z = cx.get( 0 );
// returns <Complex64>

re = realf( z );
// returns ~0.8

im = imagf( z );
// returns ~1.6

The function has the following parameters:

  • N: number of indexed elements.
  • cx: first input Complex64Array.
  • strideX: index increment for cx.
  • cy: second input Complex64Array.
  • strideY: index increment for cy.

The N and stride parameters determine how values from cx and cy are accessed at runtime. For example, to apply a plane rotation to every other element,

var Complex64Array = require( '@stdlib/array-complex64' );
var realf = require( '@stdlib/complex-float32-real' );
var imagf = require( '@stdlib/complex-float32-imag' );

var cx = new Complex64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] );
var cy = new Complex64Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );

csrot( 2, cx, 2, cy, 2, 0.8, 0.6 );

var z = cy.get( 0 );
// returns <Complex64>

var re = realf( z );
// returns ~-0.6

var im = imagf( z );
// returns ~-1.2

z = cx.get( 0 );
// returns <Complex64>

re = realf( z );
// returns ~0.8

im = imagf( z );
// returns ~1.6

Note that indexing is relative to the first index. To introduce an offset, use typed array views.

var Complex64Array = require( '@stdlib/array-complex64' );
var realf = require( '@stdlib/complex-float32-real' );
var imagf = require( '@stdlib/complex-float32-imag' );

// Initial arrays...
var cx0 = new Complex64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] );
var cy0 = new Complex64Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );

// Create offset views...
var cx1 = new Complex64Array( cx0.buffer, cx0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var cy1 = new Complex64Array( cy0.buffer, cy0.BYTES_PER_ELEMENT*2 ); // start at 3rd element

csrot( 2, cx1, -2, cy1, 1, 0.8, 0.6 );

var z = cy0.get( 2 );
// returns <Complex64>

var re = realf( z );
// returns ~-4.2

var im = imagf( z );
// returns ~-4.8

z = cx0.get( 3 );
// returns <Complex64>

re = realf( z );
// returns ~5.6

im = imagf( z );
// returns ~6.4

csrot.ndarray( N, cx, strideX, offsetX, cy, strideY, offsetY, c, s )

Applies a plane rotation using alternative indexing semantics.

var Complex64Array = require( '@stdlib/array-complex64' );
var realf = require( '@stdlib/complex-float32-real' );
var imagf = require( '@stdlib/complex-float32-imag' );

var cx = new Complex64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
var cy = new Complex64Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );

csrot.ndarray( cx.length, cx, 1, 0, cy, 1, 0, 0.8, 0.6 );

var z = cy.get( 0 );
// returns <Complex64>

var re = realf( z );
// returns ~-0.6

var im = imagf( z );
// returns ~-1.2

z = cx.get( 0 );
// returns <Complex64>

re = realf( z );
// returns ~0.8

im = imagf( z );
// returns ~1.6

The function has the following additional parameters:

  • offsetX: starting index for cx.
  • offsetY: starting index for cy.

While typed array views mandate a view offset based on the underlying buffer, the offset parameters support indexing semantics based on starting indices. For example, to apply a plane rotation to every other element starting from the second element,

var Complex64Array = require( '@stdlib/array-complex64' );
var realf = require( '@stdlib/complex-float32-real' );
var imagf = require( '@stdlib/complex-float32-imag' );

var cx = new Complex64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] );
var cy = new Complex64Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );

csrot.ndarray( 2, cx, 2, 1, cy, 2, 1, 0.8, 0.6 );

var z = cy.get( 3 );
// returns <Complex64>

var re = realf( z );
// returns ~-4.2

var im = imagf( z );
// returns ~-4.8

z = cx.get( 1 );
// returns <Complex64>

re = realf( z );
// returns ~2.4

im = imagf( z );
// returns ~3.2

Notes

  • If N <= 0, both functions leave cx and cy unchanged.
  • csrot() corresponds to the BLAS level 1 function csrot.

Examples

var discreteUniform = require( '@stdlib/random-base-discrete-uniform' );
var filledarrayBy = require( '@stdlib/array-filled-by' );
var Complex64 = require( '@stdlib/complex-float32-ctor' );
var ccopy = require( '@stdlib/blas-base-ccopy' );
var zeros = require( '@stdlib/array-zeros' );
var logEach = require( '@stdlib/console-log-each' );
var csrot = require( '@stdlib/blas-base-csrot' );

function rand() {
    return new Complex64( discreteUniform( 0, 10 ), discreteUniform( -5, 5 ) );
}

// Generate random input arrays:
var cx = filledarrayBy( 10, 'complex64', rand );
var cxc = ccopy( cx.length, cx, 1, zeros( cx.length, 'complex64' ), 1 );

var cy = filledarrayBy( 10, 'complex64', rand );
var cyc = ccopy( cy.length, cy, 1, zeros( cy.length, 'complex64' ), 1 );

// Apply a plane rotation:
csrot( cx.length, cx, 1, cy, 1, 0.8, 0.6 );

// Print the results:
logEach( '(%s,%s) => (%s,%s)', cxc, cyc, cx, cy );

C APIs

Usage

#include "stdlib/blas/base/csrot.h"

c_csrot( N, *X, strideX, *Y, strideY, c, s )

Applies a plane rotation.

float x[] = { 1.0f, 2.0f, 3.0f, 4.0f }; // interleaved real and imaginary components
float y[] = { 5.0f, 6.0f, 7.0f, 8.0f };

c_csrot( 2, (void *)x, 1, (void *)Y, 1, 0.8, 0.6 );

The function accepts the following arguments:

  • N: [in] CBLAS_INT number of indexed elements.
  • CX: [inout] void* first input array.
  • strideX: [in] CBLAS_INT index increment for CX.
  • CY: [inout] void* second input array.
  • strideY: [in] CBLAS_INT index increment for CY.
  • c: [in] float cosine of the angle of rotation.
  • s: [in] float sine of the angle of rotation.
void c_csrot( const CBLAS_INT N, void *CX, const CBLAS_INT strideX, void *CY, const CBLAS_INT strideY, const float c, const float s );

Examples

#include "stdlib/blas/base/csrot.h"
#include <stdio.h>

int main( void ) {
    // Create strided arrays:
    float x[] = { 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f };
    float y[] = { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f };

    // Specify the number of elements:
    const int N = 4;

    // Specify stride lengths:
    const int strideX = 1;
    const int strideY = -1;

    // Copy elements:
    c_csrot( N, (void *)x, strideX, (void *)y, strideY, 0.8f, 0.6f );

    // Print the result:
    for ( int i = 0; i < N; i++ ) {
        printf( "x[ %i ] = %f + %fj\n", i, x[ i*2 ], x[ (i*2)+1 ] );
        printf( "y[ %i ] = %f + %fj\n", i, y[ i*2 ], y[ (i*2)+1 ] );
    }
}

Notice

This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.

Community

Chat


License

See LICENSE.

Copyright

Copyright © 2016-2024. The Stdlib Authors.