@stdlib/blas-base-caxpy
v0.1.0
Published
Scale a single-precision complex floating-point vector by a single-precision complex floating-point constant and add the result to a single-precision complex floating-point vector.
Downloads
3
Readme
caxpy
Scale a single-precision complex floating-point vector by a single-precision complex floating-point constant and add the result to a single-precision complex floating-point vector.
Installation
npm install @stdlib/blas-base-caxpy
Usage
var caxpy = require( '@stdlib/blas-base-caxpy' );
caxpy( N, ca, cx, strideX, cy, strideY )
Scales values from cx
by ca
and adds the result to cy
.
var Complex64Array = require( '@stdlib/array-complex64' );
var Complex64 = require('@stdlib/complex-float32-ctor');
var realf = require( '@stdlib/complex-float32-real' );
var imagf = require( '@stdlib/complex-float32-imag' );
var cx = new Complex64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
var cy = new Complex64Array( [ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 ] );
var ca = new Complex64( 2.0, 2.0 );
caxpy( 3, ca, cx, 1, cy, 1 );
var z = cy.get( 0 );
// returns <Complex64>
var re = realf( z );
// returns -1.0
var im = imagf( z );
// returns 7.0
The function has the following parameters:
- N: number of indexed elements.
- ca: scalar
Complex64
constant. - cx: first input
Complex64Array
. - strideX: index increment for
cx
. - cy: second input
Complex64Array
. - strideY: index increment for
cy
.
The N
and stride parameters determine how values from cx
are scaled by ca
and added to cy
. For example, to scale every other value in cx
by ca
and add the result to every other value of cy
,
var Complex64Array = require( '@stdlib/array-complex64' );
var Complex64 = require( '@stdlib/complex-float32-ctor' );
var realf = require( '@stdlib/complex-float32-real' );
var imagf = require( '@stdlib/complex-float32-imag' );
var cx = new Complex64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] );
var cy = new Complex64Array( [ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 ] );
var ca = new Complex64( 2.0, 2.0 );
caxpy( 2, ca, cx, 2, cy, 2 );
var z = cy.get( 0 );
// returns <Complex64>
var re = realf( z );
// returns -1.0
var im = imagf( z );
// returns 7.0
Note that indexing is relative to the first index. To introduce an offset, use typed array
views.
var Complex64Array = require( '@stdlib/array-complex64' );
var Complex64 = require( '@stdlib/complex-float32-ctor' );
var realf = require( '@stdlib/complex-float32-real' );
var imagf = require( '@stdlib/complex-float32-imag' );
// Initial arrays...
var cx0 = new Complex64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] );
var cy0 = new Complex64Array( [ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 ] );
// Define a scalar constant:
var ca = new Complex64( 2.0, 2.0 );
// Create offset views...
var cx1 = new Complex64Array( cx0.buffer, cx0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var cy1 = new Complex64Array( cy0.buffer, cy0.BYTES_PER_ELEMENT*2 ); // start at 3rd element
// Scales values of `cx0` by `ca` starting from second index and add the result to `cy0` starting from third index...
caxpy( 2, ca, cx1, 1, cy1, 1 );
var z = cy0.get( 2 );
// returns <Complex64>
var re = realf( z );
// returns -1.0
var im = imagf( z );
// returns 15.0
caxpy.ndarray( N, ca, cx, strideX, offsetX, cy, strideY, offsetY )
Scales values from cx
by ca
and adds the result to cy
using alternative indexing semantics.
var Complex64Array = require( '@stdlib/array-complex64' );
var Complex64 = require( '@stdlib/complex-float32-ctor' );
var realf = require( '@stdlib/complex-float32-real' );
var imagf = require( '@stdlib/complex-float32-imag' );
var cx = new Complex64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
var cy = new Complex64Array( [ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 ] );
var ca = new Complex64( 2.0, 2.0 );
caxpy.ndarray( 3, ca, cx, 1, 0, cy, 1, 0 );
var z = cy.get( 0 );
// returns <Complex64>
var re = realf( z );
// returns -1.0
var im = imagf( z );
// returns 7.0
The function has the following additional parameters:
- offsetX: starting index for
cx
. - offsetY: starting index for
cy
.
While typed array
views mandate a view offset based on the underlying buffer, the offset parameters support indexing semantics based on starting indices. For example, to scale values in the first input strided array starting from the second element and add the result to the second input array starting from the second element,
var Complex64Array = require( '@stdlib/array-complex64' );
var Complex64 = require( '@stdlib/complex-float32-ctor' );
var realf = require( '@stdlib/complex-float32-real' );
var imagf = require( '@stdlib/complex-float32-imag' );
var cx = new Complex64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] );
var cy = new Complex64Array( [ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 ] );
var ca = new Complex64( 2.0, 2.0 );
caxpy.ndarray( 3, ca, cx, 1, 1, cy, 1, 1 );
var z = cy.get( 3 );
// returns <Complex64>
var re = realf( z );
// returns -1.0
var im = imagf( z );
// returns 31.0
Notes
- If
N <= 0
, both functions returncy
unchanged. caxpy()
corresponds to the BLAS level 1 functioncaxpy
.
Examples
var discreteUniform = require( '@stdlib/random-base-discrete-uniform' );
var filledarrayBy = require( '@stdlib/array-filled-by' );
var Complex64 = require( '@stdlib/complex-float32-ctor' );
var ccopy = require( '@stdlib/blas-base-ccopy' );
var zeros = require( '@stdlib/array-zeros' );
var logEach = require( '@stdlib/console-log-each' );
var caxpy = require( '@stdlib/blas-base-caxpy' );
function rand() {
return new Complex64( discreteUniform( 0, 10 ), discreteUniform( -5, 5 ) );
}
var cx = filledarrayBy( 10, 'complex64', rand );
var cy = filledarrayBy( 10, 'complex64', rand );
var cyc = ccopy( cy.length, cy, 1, zeros( cy.length, 'complex64' ), 1 );
var ca = new Complex64( 2.0, 2.0 );
// Scale values from `cx` by `ca` and add the result to `cy`:
caxpy( cx.length, ca, cx, 1, cy, 1 );
// Print the results:
logEach( '(%s)*(%s) + (%s) = %s', ca, cx, cyc, cy );
Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
License
See LICENSE.
Copyright
Copyright © 2016-2024. The Stdlib Authors.