npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

@stdlib/blas-base-caxpy

v0.1.0

Published

Scale a single-precision complex floating-point vector by a single-precision complex floating-point constant and add the result to a single-precision complex floating-point vector.

Downloads

3

Readme

caxpy

NPM version Build Status Coverage Status

Scale a single-precision complex floating-point vector by a single-precision complex floating-point constant and add the result to a single-precision complex floating-point vector.

Installation

npm install @stdlib/blas-base-caxpy

Usage

var caxpy = require( '@stdlib/blas-base-caxpy' );

caxpy( N, ca, cx, strideX, cy, strideY )

Scales values from cx by ca and adds the result to cy.

var Complex64Array = require( '@stdlib/array-complex64' );
var Complex64 = require('@stdlib/complex-float32-ctor');
var realf = require( '@stdlib/complex-float32-real' );
var imagf = require( '@stdlib/complex-float32-imag' );

var cx = new Complex64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
var cy = new Complex64Array( [ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 ] );
var ca = new Complex64( 2.0, 2.0 );

caxpy( 3, ca, cx, 1, cy, 1 );

var z = cy.get( 0 );
// returns <Complex64>

var re = realf( z );
// returns -1.0

var im = imagf( z );
// returns 7.0

The function has the following parameters:

  • N: number of indexed elements.
  • ca: scalar Complex64 constant.
  • cx: first input Complex64Array.
  • strideX: index increment for cx.
  • cy: second input Complex64Array.
  • strideY: index increment for cy.

The N and stride parameters determine how values from cx are scaled by ca and added to cy. For example, to scale every other value in cx by ca and add the result to every other value of cy,

var Complex64Array = require( '@stdlib/array-complex64' );
var Complex64 = require( '@stdlib/complex-float32-ctor' );
var realf = require( '@stdlib/complex-float32-real' );
var imagf = require( '@stdlib/complex-float32-imag' );

var cx = new Complex64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] );
var cy = new Complex64Array( [ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 ] );
var ca = new Complex64( 2.0, 2.0 );

caxpy( 2, ca, cx, 2, cy, 2 );

var z = cy.get( 0 );
// returns <Complex64>

var re = realf( z );
// returns -1.0

var im = imagf( z );
// returns 7.0

Note that indexing is relative to the first index. To introduce an offset, use typed array views.

var Complex64Array = require( '@stdlib/array-complex64' );
var Complex64 = require( '@stdlib/complex-float32-ctor' );
var realf = require( '@stdlib/complex-float32-real' );
var imagf = require( '@stdlib/complex-float32-imag' );

// Initial arrays...
var cx0 = new Complex64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] );
var cy0 = new Complex64Array( [ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 ] );

// Define a scalar constant:
var ca = new Complex64( 2.0, 2.0 );

// Create offset views...
var cx1 = new Complex64Array( cx0.buffer, cx0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var cy1 = new Complex64Array( cy0.buffer, cy0.BYTES_PER_ELEMENT*2 ); // start at 3rd element

// Scales values of `cx0` by `ca` starting from second index and add the result to `cy0` starting from third index...
caxpy( 2, ca, cx1, 1, cy1, 1 );

var z = cy0.get( 2 );
// returns <Complex64>

var re = realf( z );
// returns -1.0

var im = imagf( z );
// returns 15.0

caxpy.ndarray( N, ca, cx, strideX, offsetX, cy, strideY, offsetY )

Scales values from cx by ca and adds the result to cy using alternative indexing semantics.

var Complex64Array = require( '@stdlib/array-complex64' );
var Complex64 = require( '@stdlib/complex-float32-ctor' );
var realf = require( '@stdlib/complex-float32-real' );
var imagf = require( '@stdlib/complex-float32-imag' );

var cx = new Complex64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
var cy = new Complex64Array( [ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 ] );
var ca = new Complex64( 2.0, 2.0 );

caxpy.ndarray( 3, ca, cx, 1, 0, cy, 1, 0 );

var z = cy.get( 0 );
// returns <Complex64>

var re = realf( z );
// returns -1.0

var im = imagf( z );
// returns 7.0

The function has the following additional parameters:

  • offsetX: starting index for cx.
  • offsetY: starting index for cy.

While typed array views mandate a view offset based on the underlying buffer, the offset parameters support indexing semantics based on starting indices. For example, to scale values in the first input strided array starting from the second element and add the result to the second input array starting from the second element,

var Complex64Array = require( '@stdlib/array-complex64' );
var Complex64 = require( '@stdlib/complex-float32-ctor' );
var realf = require( '@stdlib/complex-float32-real' );
var imagf = require( '@stdlib/complex-float32-imag' );

var cx = new Complex64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] );
var cy = new Complex64Array( [ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 ] );
var ca = new Complex64( 2.0, 2.0 );

caxpy.ndarray( 3, ca, cx, 1, 1, cy, 1, 1 );

var z = cy.get( 3 );
// returns <Complex64>

var re = realf( z );
// returns -1.0

var im = imagf( z );
// returns 31.0

Notes

  • If N <= 0, both functions return cy unchanged.
  • caxpy() corresponds to the BLAS level 1 function caxpy.

Examples

var discreteUniform = require( '@stdlib/random-base-discrete-uniform' );
var filledarrayBy = require( '@stdlib/array-filled-by' );
var Complex64 = require( '@stdlib/complex-float32-ctor' );
var ccopy = require( '@stdlib/blas-base-ccopy' );
var zeros = require( '@stdlib/array-zeros' );
var logEach = require( '@stdlib/console-log-each' );
var caxpy = require( '@stdlib/blas-base-caxpy' );

function rand() {
    return new Complex64( discreteUniform( 0, 10 ), discreteUniform( -5, 5 ) );
}

var cx = filledarrayBy( 10, 'complex64', rand );
var cy = filledarrayBy( 10, 'complex64', rand );
var cyc = ccopy( cy.length, cy, 1, zeros( cy.length, 'complex64' ), 1 );

var ca = new Complex64( 2.0, 2.0 );

// Scale values from `cx` by `ca` and add the result to `cy`:
caxpy( cx.length, ca, cx, 1, cy, 1 );

// Print the results:
logEach( '(%s)*(%s) + (%s) = %s', ca, cx, cyc, cy );

Notice

This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.

Community

Chat


License

See LICENSE.

Copyright

Copyright © 2016-2024. The Stdlib Authors.