@stdlib/array-base-binarynd
v0.2.2
Published
Apply a binary callback to elements in two n-dimensional nested input arrays and assign results to elements in an n-dimensional nested output array.
Downloads
7
Readme
binarynd
Apply a binary callback to elements in two n-dimensional nested input arrays and assign results to elements in an n-dimensional nested output array.
Installation
npm install @stdlib/array-base-binarynd
Usage
var binarynd = require( '@stdlib/array-base-binarynd' );
binarynd( arrays, shape, fcn )
Applies a binary callback to elements in two n-dimensional nested input arrays and assigns results to elements in an n-dimensional nested output array.
var add = require( '@stdlib/math-base-ops-add' );
var x = [ [ 1.0, 2.0 ], [ 3.0, 4.0 ] ];
var shape = [ 2, 2 ];
binarynd( [ x, x, x ], shape, add );
// x => [ [ 2.0, 4.0 ], [ 6.0, 8.0 ] ]
The function accepts the following arguments:
- arrays: array-like object containing two input nested arrays and one output nested array.
- shape: array shape.
- fcn: binary function to apply.
Notes
- The function assumes that the input and output arrays have the same shape.
Examples
var discreteUniform = require( '@stdlib/random-base-discrete-uniform' ).factory;
var filledndBy = require( '@stdlib/array-base-fillednd-by' );
var zerosnd = require( '@stdlib/array-base-zerosnd' );
var add = require( '@stdlib/math-base-ops-add' );
var binarynd = require( '@stdlib/array-base-binarynd' );
var shape = [ 3, 3 ];
var x = filledndBy( shape, discreteUniform( -100, 100 ) );
console.log( x );
var y = filledndBy( shape, discreteUniform( -100, 100 ) );
console.log( y );
var z = zerosnd( shape );
console.log( z );
binarynd( [ x, y, z ], shape, add );
console.log( z );
shape = [ 3, 3, 3 ];
x = filledndBy( shape, discreteUniform( -100, 100 ) );
console.log( x );
y = filledndBy( shape, discreteUniform( -100, 100 ) );
console.log( y );
z = zerosnd( shape );
console.log( z );
binarynd( [ x, y, z ], shape, add );
console.log( z );
Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
License
See LICENSE.
Copyright
Copyright © 2016-2024. The Stdlib Authors.