@silen/leaflet-canvas
v6.1.1
Published
Allows rendering to canvas using custom HtmlElement elements.
Downloads
234
Readme
@silen/leaflet-canvas
Allows rendering to canvas using custom HtmlElement elements.
install
npm i @silen/leaflet-canvas
or
yarn add @silen/leaflet-canvas
or
pnpm add @silen/leaflet-canvas
usage
options
tolerance
:Number
The default value is0
. How much to extend the click tolerance around a path/object on the map.
for test
const features = [
{
type: 'Feature',
properties: {},
geometry: {
type: 'Polygon',
coordinates: [
[
[19.458847045898438, 51.75944673648409],
[19.46846008300781, 51.760296746815754],
[19.475669860839844, 51.745738110429116],
[19.462108612060547, 51.742868336510526],
[19.458847045898438, 51.75944673648409],
],
],
},
},
{
type: 'Feature',
properties: {},
geometry: {
type: 'Polygon',
coordinates: [
[
[19.475669860839844, 51.745738110429116],
[19.489574432373047, 51.74765119176804],
[19.489402770996094, 51.75604653513805],
[19.485111236572266, 51.76157173231003],
[19.46846008300781, 51.760296746815754],
[19.475669860839844, 51.745738110429116],
],
],
},
},
]
This is an image for test.
const imgSrc =
''
This is the interface for implementing custom rendering using canvas.
const onFillContent = (ctx, layer) => {
const img = document.createElement('img')
img.src = imgSrc
const { _pxBounds } = layer
const minX = _pxBounds.min.x
const minY = _pxBounds.min.y
const maxX = _pxBounds.max.x
const maxY = _pxBounds.max.y
const width = maxX - minX
const height = maxY - minY
img.onload = () => {
ctx.drawImage(img, minX, minY, width, height)
}
}
es
For example.
import L from 'leaflet'
import '@silen/leaflet-canvas'
const renderGroup = new L.FeatureGroup()
map.addLayer(renderGroup)
const geoJson = L.geoJson(
{
type: 'FeatureCollection',
features,
},
{
onFillContent,
onEachFeature: (feature, layer) => {
renderGroup.addLayer(layer)
},
},
)
browser
Introduce external dependencies
<link
rel="stylesheet"
href="https://cdn.jsdelivr.net/npm/[email protected]/dist/leaflet.min.css"
/>
<script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/leaflet-src.js"></script>
Introduce this plugin.
<script src="https://unpkg.com/@silen/leaflet-canvas@latest"></script>
You can also download this plugin locally and then import it.
<script src="/path/@silen/leaflet-canvas@latest"></script>
Create a dom container to load the map
<div id="map" style="height: 300px;"></div>
Use it.
let selectedLayer
const map = L.map('map', {
renderer: L.customCanvas(),
})
map.setView(new L.LatLng(51.75, 19.46667), 12)
map.addLayer(
new L.TileLayer('http://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png', {
minZoom: 8,
maxZoom: 20,
}),
)
const renderGroup = new L.FeatureGroup()
map.addLayer(renderGroup)
const geoJson = L.geoJson(
{
type: 'FeatureCollection',
features,
},
{
onFillContent,
onEachFeature: (feature, layer) => {
layer.on('click', handleLayerClick)
renderGroup.addLayer(layer)
},
},
)
function highlightFeature(layer) {
if (selectedLayer) {
geoJson.resetStyle(selectedLayer)
}
selectedLayer = layer
layer.setStyle({
weight: 5,
color: '#666',
dashArray: '',
fillOpacity: 0.7,
})
layer.bringToFront()
}
function handleLayerClick(event) {
const layer = event.target
highlightFeature(layer)
}