@shahzaib-sheikh/db-scan
v1.0.1
Published
Density based clustering algorithm implementation
Downloads
2
Readme
dbscan
Density-based spatial clustering of applications with noise (DBSCAN) is one of the most popular algorithm for clustering data. inspired by https://github.com/uhho/density-clustering
Installation
npm install @shahzaib-sheikh/db-scan
Usage
import DBSCAN from '@shahzaib-sheikh/db-scan';
const dbScan = new DBSCAN<ImageModel>(dataSetArray, neighbourHoodRadius, minPts, (a, b ) => {
return Math.sqrt(Math.pow(moment(a.createdAt).diff(b.createdAt), 2));
});
dbScan.getClusteredData();
Example Usage
To cluster (group) images taken on short period of time
import * as moment from 'moment';
import DBSCAN from '@shahzaib-sheikh/db-scan';
class ImageModel {
public id: number;
public createdAt: Date;
constructor(id: number, createdAt: Date) {
this.id = id;
this.createdAt = createdAt;
}
}
let idCounter = 234;
const images = [
new ImageModel(idCounter++, new Date(2018, 7, 23)),
new ImageModel(idCounter++, new Date(2018, 7, 25)),
new ImageModel(idCounter++, new Date(2018, 7, 26)),
new ImageModel(idCounter++, new Date(2018, 7, 27)),
new ImageModel(idCounter++, new Date(2018, 7, 1)),
new ImageModel(idCounter++, new Date(2018, 7, 3)),
new ImageModel(idCounter++, new Date(2018, 7, 7)),
new ImageModel(idCounter++, new Date(2018, 7, 8)),
];
let epsilon = 25 * 60 * 60 * 1000 ; //milliseconds
const dbScan = new DBSCAN<ImageModel>(images,epsilon , 2, (a: ImageModel, b: ImageModel) => {
return Math.sqrt(Math.pow(moment(a.createdAt).diff(b.createdAt), 2));
});
dbScan.getClusteredData();
/*
returns
[
[
ImageModel { id: 235, createdAt: 2018-08-24T19:00:00.000Z },
ImageModel { id: 236, createdAt: 2018-08-25T19:00:00.000Z },
ImageModel { id: 237, createdAt: 2018-08-26T19:00:00.000Z }
],
[
ImageModel { id: 240, createdAt: 2018-08-06T19:00:00.000Z },
ImageModel { id: 241, createdAt: 2018-08-07T19:00:00.000Z }
]
]
*/
License
MIT