npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

@sgwilym/urlpattern-polyfill

v1.0.0-rc8

Published

Polyfill for the proposed URLPattern API

Downloads

20

Readme

URLPattern polyfills

URLPattern is a new web API for matching URLs. Its intended to both provide a convenient API for web developers and to be usable in other web APIs that need to match URLs; e.g. service workers. The explainer discusses the motivating use cases. There is also a design document that goes into more details.

This is a polyfill for the URLPattern and URLPatternList API currently in development in Chromium based browsers. A specification has not been written yet, but this follows the C++ implementation as well as possible and incorporates and passes the same test suite.

Once the initial Chromium prototype is complete we will gather feedback and iterate. When we believe the API is stable, we will then codify it in a spec.

Basic example

let p = new URLPattern({ pathname: '/foo/:name' });

let r = p.exec('https://example.com/foo/bar');
console.log(r.pathname.input); // "/foo/bar"
console.log(r.pathname.groups.name); // "bar"

let r2 = p.exec({ pathname: '/foo/baz' });
console.log(r2.pathname.groups.name); // "baz"

Example of matching same-origin JPG or PNG requests

// Match same-origin jpg or png URLs.
// Note: This uses a named group to make it easier to access
//       the result later.
const p = new URLPattern({
  pathname: '/*.:filetype(jpg|png)',
  baseURL: self.location
});

for (let url in url_list) {
  const r = p.exec(url);

  // skip non-matches
  if (!r) {
    continue;
  }

  if (r.pathname.groups['filetype'] === 'jpg') {
    // process jpg
  } else if (r.pathname.groups['filetype'] === 'png') {
    // process png
  }
}

The pattern in this case can be made simpler without the origin check by leaving off the baseURL.

// Match any URL ending with 'jpg' or 'png'.
const p = new URLPattern({ pathname: '/*.:filetype(jpg|png)' });

Example of Short Form Support

We are planning to also support a "short form" for initializing URLPattern objects. This is supported by the polyfill but not yet by the Chromium implementation.

For example:

const p = new URLPattern("https://*.example.com/foo/*");

Or:

const p = new URLPattern("foo/*", self.location);

API reference

API overview with typeScript type annotations is found below. Associated browser Web IDL can be found here.

class URLPattern {
  constructor(init: URLPatternInit);
  constructor(shortPattern: string, baseURL: string = ""));

  test(input: URLPattern | string): boolean;
  exec(input: URLPattern | string): URLPatternResult;
};

interface URLPatternInit {
  baseURL?: string;
  username?: string;
  password?: string;
  protocol?: string;
  hostname?: string;
  port?: string;
  pathname?: string;
  search?: string;
  hash?: string;
}

interface URLPatternComponentResult {
  input: string;
  groups: { [key: string]: string };
}

interface URLPatternResult {
  input: URLPatternInit | string;

  protocol: URLPatternComponentResult;
  username: URLPatternComponentResult;
  password: URLPatternComponentResult;
  hostname: URLPatternComponentResult;
  port: URLPatternComponentResult;
  pathname: URLPatternComponentResult;
  search: URLPatternComponentResult;
  hash: URLPatternComponentResult;
}

Pattern syntax

The pattern syntax here is based on what is used in the popular path-to-regexp library.

  • An understanding of a "divider" that separates segments of the string. For the pathname this is typically the "/" character.
  • A regex group defined by an enclosed set of parentheses. Inside of the parentheses a general regex may be defined.
  • A named group that matches characters until the next divider. The named group begins with a ":" character and then a name. For example, "/:foo/:bar" has two named groups.
  • A custom regex for a named group. In this case a set of parentheses with a regex immediately follows the named group; e.g. "/:foo(.*)" will override the default of matching to the next divider.
  • A modifier may optionally follow a regex or named group. A modifier is a "?", "*", or "+" functions just as they do in regular expressions. When a group is optional or repeated and it's preceded by a divider then the divider is also optional or repeated. For example, "/foo/:bar?" will match "/foo", "/foo/", or "/foo/baz". Escaping the divider will make it required instead.
  • A way to greedily match characters, even across dividers, by using "(.*)" (so-called unnamed groups).

Currently we plan to have these known differences with path-to-regexp:

  • No support for custom prefixes and suffixes.

Canonicalization

URLs have a canonical form that is based on ASCII, meaning that internationalized domain names (hostnames) also have a canonical ASCII based representation, and that other components such as hash, search and pathname are encoded using percent encoding.

Currently URLPattern does not perform any encoding or normalization of the patterns. So a developer would need to URL encode unicode characters before passing the pattern into the constructor. Similarly, the constructor does not do things like flattening pathnames such as /foo/../bar to /bar. Currently the pattern must be written to target canonical URL output manually.

It does, however, perform these operations for test() and exec() input.

Encoding components can easily be done manually, but do not encoding the pattern syntax:

encodeURIComponent("?q=æøå")
// "%3Fq%3D%C3%A6%C3%B8%C3%A5"
new URL("https://ølerlækkernårdetermit.dk").hostname
// "xn--lerlkkernrdetermit-dubo78a.dk"

Learn more

Reporting a security issue

If you have information about a security issue or vulnerability with an Intel-maintained open source project on https://github.com/intel, please send an e-mail to [email protected]. Encrypt sensitive information using our PGP public key. For issues related to Intel products, please visit https://security-center.intel.com.