@seregpie/k-means-plus-plus
v2.0.1
Published
Implementation of the k-means-plus-plus algorithm to partition the values into the clusters.
Downloads
161
Maintainers
Readme
KMeansPlusPlus
KMeansPlusPlus(values, clustersCount, {
distance(value, otherValue) { /* euclidean distance */ },
map(value) { /* identity */ },
maxIterations: 1024,
mean(...values) { /* centroid */ },
random: Math.random,
})
Implementation of the k-means-plus-plus algorithm to partition the values into the clusters.
| argument | description |
| ---: | :--- |
| values
| An iterable of the values to be clustered. |
| clustersCount
| Nhe number of the clusters. |
| distance
| A function to calculate the distance between two values. |
| map
| A function to map the values. |
| maxIterations
| The maximum number of iterations until the convergence. |
| mean
| A function to calculate the mean value. |
| random
| A function as the pseudo-random number generator. |
Returns the clustered values as an array of arrays.
dependencies
setup
npm
npm install @seregpie/k-means-plus-plus
ES module
import KMeansPlusPlus from '@seregpie/k-means-plus-plus';
Node
let KMeansPlusPlus = require('@seregpie/k-means-plus-plus');
browser
<script src="https://unpkg.com/just-my-luck"></script>
<script src="https://unpkg.com/@seregpie/vector-math"></script>
<script src="https://unpkg.com/@seregpie/k-means"></script>
<script src="https://unpkg.com/@seregpie/k-means-plus-plus"></script>
The module is globally available as KMeansPlusPlus
.
usage
let vectors = [[1, 4], [6, 2], [0, 4], [1, 3], [5, 1], [4, 0]];
let clusters = KMeans(vectors, 2);
// => [[[1, 4], [0, 4], [1, 3]], [[6, 2], [5, 1], [4, 0]]]
Provide a map
function to convert a value to a vector.
let Athlete = class {
constructor(name, height, weight) {
this.name = name;
this.height = height;
this.weight = weight;
}
toJSON() {
return this.name;
}
};
let athletes = [
new Athlete('A', 185, 72), new Athlete('B', 183, 84), new Athlete('C', 168, 60),
new Athlete('D', 179, 68), new Athlete('E', 182, 72), new Athlete('F', 188, 77),
new Athlete('G', 180, 71), new Athlete('H', 180, 70), new Athlete('I', 170, 56),
new Athlete('J', 180, 88), new Athlete('K', 180, 67), new Athlete('L', 177, 76),
];
let clusteredAthletes = KMeansPlusPlus(athletes, 2, {
map: athlete => [athlete.weight / athlete.height],
});
console.log(JSON.parse(JSON.stringify(clusteredAthletes)));
// => [['A', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'K'], ['B', 'J', 'L']]