@scure/btc-signer
v1.4.0
Published
Audited & minimal library for Bitcoin. Handle transactions, Schnorr, Taproot, UTXO & PSBT
Downloads
75,677
Maintainers
Readme
scure-btc-signer
Audited & minimal library for creating, signing & decoding Bitcoin transactions.
- 🔒 Audited by an independent security firm
- ✍️ Create transactions, inputs, outputs, sign them
- 📡 No network code: simplified audits and offline usage
- 🔀 UTXO selection with different strategies
- 🎻 Classic & SegWit: P2PK, P2PKH, P2WPKH, P2SH, P2WSH, P2MS
- 🧪 Schnorr & Taproot BIP340/BIP341: P2TR, P2TR-NS, P2TR-MS
- 📨 BIP174 PSBT
- 🗳️ Easy ordinals and inscriptions
- 🪶 3300 lines
Initial development has been funded by Ryan Shea.
For discussions, questions and support, visit GitHub Discussions section of the repository.
Check out all web3 utility libraries: ETH, BTC, SOL, ordinals
This library belongs to scure
scure — audited micro-libraries.
- Zero or minimal dependencies
- Highly readable TypeScript / JS code
- PGP-signed releases and transparent NPM builds
- Check out homepage & all libraries: base, bip32, bip39, btc-signer, starknet
Usage
npm install @scure/btc-signer
We support all major platforms and runtimes. For Deno, ensure to use npm specifier. For React Native, you may need a polyfill for crypto.getRandomValues.
import * as btc from '@scure/btc-signer';
// import * as btc from "npm:@scure/[email protected]"; // Deno
Payments
BTC has several UTXO types:
- P2PK: Legacy, from 2010
- P2PKH, P2SH, P2MS: Classic
- P2WPKH, P2WSH: classic, SegWit
- P2TR: Taproot, recommended
For test examples, the usage is as following:
npm install @scure/btc-signer @scure/base assert
import * as btc from '@scure/btc-signer';
import { hex } from '@scure/base';
import { deepStrictEqual, throws } from 'assert';
P2PK (Pay To Public Key)
Legacy script, doesn't have an address. Must be wrapped in P2SH / P2WSH / P2SH-P2WSH. Not recommended.
const uncompressed = hex.decode(
'04ad90e5b6bc86b3ec7fac2c5fbda7423fc8ef0d58df594c773fa05e2c281b2bfe877677c668bd13603944e34f4818ee03cadd81a88542b8b4d5431264180e2c28'
);
deepStrictEqual(btc.p2pk(uncompressed), {
type: 'pk',
script: hex.decode(
'4104ad90e5b6bc86b3ec7fac2c5fbda7423fc8ef0d58df594c773fa05e2c281b2bfe877677c668bd13603944e34f4818ee03cadd81a88542b8b4d5431264180e2c28ac'
),
});
P2PKH (Public Key Hash)
Classic (pre-SegWit) address.
const PubKey = hex.decode('030000000000000000000000000000000000000000000000000000000000000001');
deepStrictEqual(btc.p2pkh(PubKey), {
type: 'pkh',
address: '134D6gYy8DsR5m4416BnmgASuMBqKvogQh',
script: hex.decode('76a914168b992bcfc44050310b3a94bd0771136d0b28d188ac'),
});
// P2SH-P2PKH
deepStrictEqual(btc.p2sh(btc.p2pkh(PubKey)), {
type: 'sh',
address: '3EPhLJ1FuR2noj6qrTs4YvepCvB6sbShoV',
script: hex.decode('a9148b530b962725af3bb7c818f197c619db3f71495087'),
redeemScript: hex.decode('76a914168b992bcfc44050310b3a94bd0771136d0b28d188ac'),
});
// P2WSH-P2PKH
deepStrictEqual(btc.p2wsh(btc.p2pkh(PubKey)), {
type: 'wsh',
address: 'bc1qhxtthndg70cthfasy8y4qlk9h7r3006azn9md0fad5dg9hh76nkqaufnuz',
script: hex.decode('0020b996bbcda8f3f0bba7b021c9507ec5bf8717bf5d14cbb6bd3d6d1a82defed4ec'),
witnessScript: hex.decode('76a914168b992bcfc44050310b3a94bd0771136d0b28d188ac'),
});
// P2SH-P2WSH-P2PKH
deepStrictEqual(btc.p2sh(btc.p2wsh(btc.p2pkh(PubKey))), {
type: 'sh',
address: '3EHxWHyLv5Seu5Cd6D1cH56jLKxSi3ps8C',
script: hex.decode('a9148a3d36fb710a9c7cae06cfcdf39792ff5773e8f187'),
redeemScript: hex.decode('0020b996bbcda8f3f0bba7b021c9507ec5bf8717bf5d14cbb6bd3d6d1a82defed4ec'),
witnessScript: hex.decode('76a914168b992bcfc44050310b3a94bd0771136d0b28d188ac'),
});
P2WPKH (Witness Public Key Hash)
SegWit V0 version of P2PKH. Basic bech32 address. Can't be wrapped in P2WSH.
const PubKey = hex.decode('030000000000000000000000000000000000000000000000000000000000000001');
deepStrictEqual(btc.p2wpkh(PubKey), {
type: 'wpkh',
address: 'bc1qz69ej270c3q9qvgt822t6pm3zdksk2x35j2jlm',
script: hex.decode('0014168b992bcfc44050310b3a94bd0771136d0b28d1'),
});
// P2SH-P2WPKH
deepStrictEqual(btc.p2sh(btc.p2wpkh(PubKey)), {
type: 'sh',
address: '3BCuRViGCTXmQjyJ9zjeRUYrdZTUa38zjC',
script: hex.decode('a91468602f2db7b7d7cdcd2639ab6bf7f5bfe828e53f87'),
redeemScript: hex.decode('0014168b992bcfc44050310b3a94bd0771136d0b28d1'),
});
P2SH (Script Hash)
Classic (pre-SegWit) script address. Useful for multisig and other advanced use-cases. Consumes full output of other payments — NOT only script.
Required tx input fields to make it spendable: redeemScript
const PubKey = hex.decode('030000000000000000000000000000000000000000000000000000000000000001');
// Wrap P2PKH in P2SH
deepStrictEqual(btc.p2sh(btc.p2pkh(PubKey)), {
type: 'sh',
address: '3EPhLJ1FuR2noj6qrTs4YvepCvB6sbShoV',
script: hex.decode('a9148b530b962725af3bb7c818f197c619db3f71495087'),
redeemScript: hex.decode('76a914168b992bcfc44050310b3a94bd0771136d0b28d188ac'),
});
P2WSH (Witness Script Hash)
SegWit V0 version of P2SH.
Required tx input fields to make it spendable: witnessScript
const PubKey = hex.decode('030000000000000000000000000000000000000000000000000000000000000001');
deepStrictEqual(btc.p2wsh(btc.p2pkh(PubKey)), {
type: 'wsh',
address: 'bc1qhxtthndg70cthfasy8y4qlk9h7r3006azn9md0fad5dg9hh76nkqaufnuz',
script: hex.decode('0020b996bbcda8f3f0bba7b021c9507ec5bf8717bf5d14cbb6bd3d6d1a82defed4ec'),
witnessScript: hex.decode('76a914168b992bcfc44050310b3a94bd0771136d0b28d188ac'),
});
P2SH-P2WSH
Not really script type, but construction of P2WSH inside P2SH.
Required tx input fields to make it spendable: redeemScript
, witnessScript
const PubKey = hex.decode('030000000000000000000000000000000000000000000000000000000000000001');
deepStrictEqual(btc.p2sh(btc.p2wsh(btc.p2pkh(PubKey))), {
type: 'sh',
address: '3EHxWHyLv5Seu5Cd6D1cH56jLKxSi3ps8C',
script: hex.decode('a9148a3d36fb710a9c7cae06cfcdf39792ff5773e8f187'),
redeemScript: hex.decode('0020b996bbcda8f3f0bba7b021c9507ec5bf8717bf5d14cbb6bd3d6d1a82defed4ec'),
witnessScript: hex.decode('76a914168b992bcfc44050310b3a94bd0771136d0b28d188ac'),
});
P2MS (classic multisig)
Classic / segwit (pre-taproot) M-of-N Multisig. Doesn't have an address, must be wrapped in P2SH / P2WSH / P2SH-P2WSH.
Duplicate public keys are not accepted to reduce mistakes. Use flag allowSamePubkeys
to override the behavior, for cases like 2-of-[A,A,B,C]
, which can be signed by A or (B and C)
.
const PubKeys = [
hex.decode('030000000000000000000000000000000000000000000000000000000000000001'),
hex.decode('030000000000000000000000000000000000000000000000000000000000000002'),
hex.decode('030000000000000000000000000000000000000000000000000000000000000003'),
];
// Multisig 2-of-3 wrapped in P2SH
deepStrictEqual(btc.p2sh(btc.p2ms(2, PubKeys)), {
type: 'sh',
address: '3G4AeQtzCLoDAyv2eb3UVTG5atfkyHtuRn',
script: hex.decode('a9149d91c6de4eacde72a7cc86bff98d1915b3c7818f87'),
redeemScript: hex.decode(
'5221030000000000000000000000000000000000000000000000000000000000000001210300000000000000000000000000000000000000000000000000000000000000022103000000000000000000000000000000000000000000000000000000000000000353ae'
),
});
// Multisig 2-of-3 wrapped in P2WSH
deepStrictEqual(btc.p2wsh(btc.p2ms(2, PubKeys)), {
type: 'wsh',
address: 'bc1qwnhzkn8wcyyrnfyfcp7555urssu5dq0rmnvg70hg02z3nxgg4f0qljmr2h',
script: hex.decode('002074ee2b4ceec10839a489c07d4a538384394681e3dcd88f3ee87a85199908aa5e'),
witnessScript: hex.decode(
'5221030000000000000000000000000000000000000000000000000000000000000001210300000000000000000000000000000000000000000000000000000000000000022103000000000000000000000000000000000000000000000000000000000000000353ae'
),
});
// Multisig 2-of-3 wrapped in P2SH-P2WSH
deepStrictEqual(btc.p2sh(btc.p2wsh(btc.p2ms(2, PubKeys))), {
type: 'sh',
address: '3HKWSo57kmcJZ3h43pXS3m5UESR4wXcWTd',
script: hex.decode('a914ab70ab84b12b891364b4b2a14ca813cac308b24287'),
redeemScript: hex.decode('002074ee2b4ceec10839a489c07d4a538384394681e3dcd88f3ee87a85199908aa5e'),
witnessScript: hex.decode(
'5221030000000000000000000000000000000000000000000000000000000000000001210300000000000000000000000000000000000000000000000000000000000000022103000000000000000000000000000000000000000000000000000000000000000353ae'
),
});
// Useful util: wraps P2MS in P2SH or P2WSH
deepStrictEqual(btc.p2sh(btc.p2ms(2, PubKeys)), btc.multisig(2, PubKeys));
deepStrictEqual(btc.p2wsh(btc.p2ms(2, PubKeys)), btc.multisig(2, PubKeys, undefined, true));
// Sorted multisig (BIP67)
deepStrictEqual(btc.p2sh(btc.p2ms(2, PubKeys)), btc.sortedMultisig(2, PubKeys));
deepStrictEqual(btc.p2wsh(btc.p2ms(2, PubKeys)), btc.sortedMultisig(2, PubKeys, true));
P2TR (Taproot)
TapRoot (SegWit V1) script which replaces both public key and script types from previous versions.
Consumes p2tr(PubKey?, ScriptTree?)
and works as PubKey
OR ScriptTree
, which means
if you use any spendable PubKey and ScriptTree of multi-sig, owner of private key for PubKey will
be able to spend output. If PubKey is undefined we use static unspendable PubKey by default, which leaks information about script type. However, any dynamic unspendable keys will require complex interaction
to sign multi-sig wallets, and there is no BIP/PSBT fields for that yet.
Required tx input fields to make it spendable: tapInternalKey
, tapMerkleRoot
, tapLeafScript
const PubKey = hex.decode('0101010101010101010101010101010101010101010101010101010101010101');
// Key Path Spend (owned of private key for PubKey can spend)
deepStrictEqual(btc.p2tr(PubKey), {
type: 'tr',
address: 'bc1p7yu5dsly83jg5tkxcljsa30vnpdpl22wr6rty98t6x6p6ekz2gkqzf2t2s',
script: hex.decode('5120f13946c3e43c648a2ec6c7e50ec5ec985a1fa94e1e86b214ebd1b41d66c2522c'),
tweakedPubkey: hex.decode('f13946c3e43c648a2ec6c7e50ec5ec985a1fa94e1e86b214ebd1b41d66c2522c'),
tapInternalKey: hex.decode('0101010101010101010101010101010101010101010101010101010101010101'),
});
const clean = (x) => ({ type: x.type, address: x.address, script: hex.encode(x.script) });
const PubKey2 = hex.decode('0202020202020202020202020202020202020202020202020202020202020202');
const PubKey3 = hex.decode('1212121212121212121212121212121212121212121212121212121212121212');
// Nested P2TR, owner of private key for any of PubKeys can spend whole
// By default P2TR expects binary tree, but btc.p2tr can build it if list of scripts passed.
// Also, you can include {weight: N} to scripts to create differently balanced tree.
deepStrictEqual(
clean(btc.p2tr(undefined, [btc.p2tr_pk(PubKey), btc.p2tr_pk(PubKey2), btc.p2tr_pk(PubKey3)])),
{
type: 'tr',
// weights for bitcoinjs-lib: [3,2,1]
address: 'bc1pj2uvajyygyu2zw0rg0d6yxdsc920kzc5pamfgtlqepe30za922cqjjmkta',
script: '512092b8cec8844138a139e343dba219b0c154fb0b140f76942fe0c873178ba552b0',
}
);
// If scriptsTree is already binary tree, it will be used as-is
deepStrictEqual(
clean(btc.p2tr(undefined, [btc.p2tr_pk(PubKey2), [btc.p2tr_pk(PubKey), btc.p2tr_pk(PubKey3)]])),
{
type: 'tr',
// default weights for bitcoinjs-lib
address: 'bc1pvue6sk9efyvcvpzzqkg8at4qy2u67zj7rj5sfsy573m7alxavqjqucc26a',
script: '51206733a858b9491986044205907eaea022b9af0a5e1ca904c094f477eefcdd6024',
}
);
P2TR-NS (Taproot multisig)
Taproot N-of-N multisig ([<PubKeys[0:n-1]> CHECKSIGVERIFY] <PubKeys[n-1]> CHECKSIG
).
First arg is M, if M!=PubKeys.length, it will create a multi-leaf M-of-N taproot script tree.
This allows one to reveal only M
PubKeys on spend, without any information about the others.
This is fast for cases like 15-of-20, but extremely slow for cases like 5-of-20.
Duplicate public keys are not accepted to reduce mistakes. Use flag allowSamePubkeys
to override the behavior, for cases like 2-of-[A,A,B,C]
, which can be signed by A or (B and C)
.
const PubKey = hex.decode('0101010101010101010101010101010101010101010101010101010101010101');
const PubKey2 = hex.decode('0202020202020202020202020202020202020202020202020202020202020202');
const PubKey3 = hex.decode('1212121212121212121212121212121212121212121212121212121212121212');
// Simple 3-of-3 multisig
// Creates a single script that requires all three pubkeys: [PubKey, PubKey2, PubKey3]
deepStrictEqual(btc.p2tr_ns(3, [PubKey, PubKey2, PubKey3]), [
{
type: 'tr_ns',
script: hex.decode(
'200101010101010101010101010101010101010101010101010101010101010101ad200202020202020202020202020202020202020202020202020202020202020202ad201212121212121212121212121212121212121212121212121212121212121212ac'
),
},
]);
// Simple 2-of-3 multisig
// If M (pubkeys required) is less than N (# of pubkeys), then multiple scripts are created: [[PubKey, PubKey2], [PubKey, PubKey3], [PubKey2, PubKey3]]
const clean = (x) => ({ type: x.type, address: x.address, script: hex.encode(x.script) });
deepStrictEqual(clean(btc.p2tr(undefined, btc.p2tr_ns(2, [PubKey, PubKey2, PubKey3]))), {
type: 'tr',
address: 'bc1pevfcmnkqqq09a4n0fs8c7mwlc6r4efqpvgyqpjvegllavgw235fq3kz7a0',
script: '5120cb138dcec0001e5ed66f4c0f8f6ddfc6875ca401620800c99947ffd621ca8d12',
});
P2TR-MS (Taproot M-of-N multisig)
M-of-N single leaf TapRoot multisig (<PubKeys[0]> CHECKSIG [<PubKeys[1:n]> CHECKSIGADD] <M> NUMEQUAL
)
Duplicate public keys are not accepted to reduce mistakes. Use flag allowSamePubkeys
to override the behavior, for cases like 2-of-[A,A,B,C]
, which can be signed by A or (B and C)
.
Experimental, use at your own risk.
const PubKey = hex.decode('0101010101010101010101010101010101010101010101010101010101010101');
const PubKey2 = hex.decode('0202020202020202020202020202020202020202020202020202020202020202');
const PubKey3 = hex.decode('1212121212121212121212121212121212121212121212121212121212121212');
// 2-of-3 TapRoot multisig
deepStrictEqual(btc.p2tr_ms(2, [PubKey, PubKey2, PubKey3]), {
type: 'tr_ms',
script: hex.decode(
'200101010101010101010101010101010101010101010101010101010101010101ac200202020202020202020202020202020202020202020202020202020202020202ba201212121212121212121212121212121212121212121212121212121212121212ba529c'
),
});
// Creates a single script for [PubKey, PubKey2, PubKey3]
const clean = (x) => ({ type: x.type, address: x.address, script: hex.encode(x.script) });
deepStrictEqual(clean(btc.p2tr(undefined, btc.p2tr_ms(2, [PubKey, PubKey2, PubKey3]))), {
type: 'tr',
address: 'bc1p6m2xevckax9zucumnnyvu4xhxem66ugc5r2zlw2a20s0hxnutl8qfef23s',
script: '5120d6d46cb316e98a2e639b9cc8ce54d73677ad7118a0d42fb95d53e0fb9a7c5fce',
});
P2TR-PK (Taproot single P2PK script)
Specific case of p2tr_ns(1, [pubkey])
, which is the same as the BTC descriptor: tr($H,pk(PUBKEY))
const PubKey = hex.decode('0101010101010101010101010101010101010101010101010101010101010101');
// P2PK for taproot
const clean = (x) => ({ type: x.type, address: x.address, script: hex.encode(x.script) });
deepStrictEqual(clean(btc.p2tr(undefined, [btc.p2tr_pk(PubKey)])), {
type: 'tr',
address: 'bc1pfj6w68w3v2f4pkzesc9tsqfvy5znw5qgydwa832v3v83vjn76kdsmr4360',
script: '51204cb4ed1dd1629350d859860ab8012c2505375008235dd3c54c8b0f164a7ed59b',
});
Transaction
Encode/decode
We support both PSBTv0 and draft PSBTv2 (there is no PSBTv1). If PSBTv2 transaction is encoded into PSBTv1, all PSBTv2 fields will be stripped.
We strip 'unknown' keys inside PSBT, they needed for new version/features support, however any unsupported feature/new version can significantly break assumptions about code. If you have use-case where they are needed, create a github issue.
PSBTv2 features tx_modifiable and taproot+bip32 are not supported yet.
// Decode
Transaction.fromRaw(raw: Bytes, opts: TxOpts = {}); // Raw tx
Transaction.fromPSBT(psbt: Bytes, opts: TxOpts = {}); // PSBT tx
// Encode
tx.unsignedTx; // Bytes of raw unsigned tx
tx.hex; // hex encoded signed raw tx
tx.toPSBT(ver = this.PSBTVersion); // PSBT
Inputs
We have txid (BE) instead of hash (LE) in transactions. We can support both, but txid is consistent across block explorers, while some explorers treat hash as txid - so hash is not consistent.
Use getInput
and inputsLength
to read information about inputs: they return a copy.
This is necessary to avoid accidental modification of internal structures without calling methods (addInput/updateInput) that will verify correctness.
type TransactionInput = {
txid?: Bytes,
index?: number,
nonWitnessUtxo?: <RawTransactionBytesOrHex>,
witnessUtxo?: {script?: Bytes; amount: bigint},
partialSig?: [Bytes, Bytes][]; // [PubKey, Signature]
sighashType?: P.U32LE,
redeemScript?: Bytes,
witnessScript?: Bytes,
bip32Derivation?: [Bytes, {fingerprint: number; path: number[]}]; // [PubKey, DeriviationPath]
finalScriptSig?: Bytes,
finalScriptWitness?: Bytes[],
porCommitment?: Bytes,
sequence?: number,
requiredTimeLocktime?: number,
requiredHeightLocktime?: number,
tapKeySig?: Bytes,
tapScriptSig?: [Bytes, Bytes][]; // [PubKeySchnorr, LeafHash]
// [ControlBlock, ScriptWithVersion]
tapLeafScript?: [{version: number; internalKey: Bytes; merklePath: Bytes[]}, Bytes];
tapInternalKey?: Bytes,
tapMerkleRoot?: Bytes,
};
tx.addInput(input: TransactionInput): number;
tx.updateInput(idx: number, input: TransactionInput);
// Input
tx.addInput({ txid: new Uint8Array(32), index: 0 });
deepStrictEqual(tx.inputs[0], {
txid: new Uint8Array(32),
index: 0,
sequence: btc.DEFAULT_SEQUENCE,
});
// Update basic value
tx.updateInput(0, { index: 10 });
deepStrictEqual(tx.inputs[0], {
txid: new Uint8Array(32),
index: 10,
sequence: btc.DEFAULT_SEQUENCE,
});
// Add value as hex
tx.addInput({
txid: '0000000000000000000000000000000000000000000000000000000000000000',
index: 0,
});
deepStrictEqual(tx.inputs[2], {
txid: new Uint8Array(32),
index: 0,
sequence: btc.DEFAULT_SEQUENCE,
});
// Update key map
const pubKey = hex.decode('030000000000000000000000000000000000000000000000000000000000000001');
const bip1 = [pubKey, { fingerprint: 5, path: [1, 2, 3] }];
const pubKey2 = hex.decode('030000000000000000000000000000000000000000000000000000000000000002');
const bip2 = [pubKey2, { fingerprint: 6, path: [4, 5, 6] }];
const pubKey3 = hex.decode('030000000000000000000000000000000000000000000000000000000000000003');
const bip3 = [pubKey3, { fingerprint: 7, path: [7, 8, 9] }];
// Add K-V
tx.updateInput(0, { bip32Derivation: [bip1] });
deepStrictEqual(tx.inputs[0].bip32Derivation, [bip1]);
// Add another K-V
tx.updateInput(0, { bip32Derivation: [bip2] });
deepStrictEqual(tx.inputs[0].bip32Derivation, [bip1, bip2]);
// Delete K-V
tx.updateInput(0, { bip32Derivation: [[pubKey, undefined]] });
deepStrictEqual(tx.inputs[0].bip32Derivation, [bip2]);
// Second add of same k-v does nothing
tx.updateInput(0, { bip32Derivation: [bip2] });
deepStrictEqual(tx.inputs[0].bip32Derivation, [bip2]);
// Second add of k-v with different value breaks
throws(() => tx.updateInput(0, { bip32Derivation: [[pubKey2, bip1[1]]] }));
tx.updateInput(0, { bip32Derivation: [bip1, bip2, bip3] });
// Preserves order (re-ordered on PSBT encoding)
deepStrictEqual(tx.inputs[0].bip32Derivation, [bip2, bip1, bip3]);
// PSBT encoding re-order k-v
const tx2 = btc.Transaction.fromPSBT(tx.toPSBT());
deepStrictEqual(tx2.inputs[0].bip32Derivation, [bip1, bip2, bip3]);
// Remove field
tx.updateInput(0, { bip32Derivation: undefined });
deepStrictEqual(tx.inputs[0], {
txid: new Uint8Array(32),
index: 10,
sequence: btc.DEFAULT_SEQUENCE,
});
// Read inputs
for (let i = 0; i < tx.inputsLength; i++) {
console.log('I', tx.getInput(i));
}
Outputs
addOutputAddress
uses bigint amounts, which means satoshis - NOT btc. If you need btc representation, use Decimal:
const amountSatoshi = btc.Decimal.decode('1.5'); // 1.5 btc in satoshi
Use getOutput
and outputsLength
to read outputs information. This methods returns copy of output, instead of internal representation.
This is necessary to avoid accidental modification of internal structures without calling methods (addOutput/updateOutput) that will verify correctness.
type TransactionOutput = {
script?: Bytes,
amount?: bigint,
redeemScript?: Bytes,
witnessScript?: Bytes,
bip32Derivation?: [Bytes, {fingerprint: number; path: number[]}]; // [PubKey, DeriviationPath]
tapInternalKey?: Bytes,
};
tx.addOutput(o: TransactionOutput): number;
tx.updateOutput(idx: number, output: TransactionOutput);
tx.addOutputAddress(address: string, amount: bigint, network = NETWORK): number;
const compressed = hex.decode(
'030000000000000000000000000000000000000000000000000000000000000001'
);
const script = btc.p2pkh(compressed).script;
tx.addOutput({ script, amount: 100n });
deepStrictEqual(tx.outputs[0], {
script,
amount: 100n,
});
// Update basic value
tx.updateOutput(0, { amount: 200n });
deepStrictEqual(tx.outputs[0], {
script,
amount: 200n,
});
// Add K-V
tx.updateOutput(0, { bip32Derivation: [bip1] });
deepStrictEqual(tx.outputs[0].bip32Derivation, [bip1]);
// Add another K-V
tx.updateOutput(0, { bip32Derivation: [bip2] });
deepStrictEqual(tx.outputs[0].bip32Derivation, [bip1, bip2]);
// Delete K-V
tx.updateOutput(0, { bip32Derivation: [[pubKey, undefined]] });
deepStrictEqual(tx.outputs[0].bip32Derivation, [bip2]);
// Second add of same k-v does nothing
tx.updateOutput(0, { bip32Derivation: [bip2] });
deepStrictEqual(tx.outputs[0].bip32Derivation, [bip2]);
// Second add of k-v with different value breaks
throws(() => tx.updateOutput(0, { bip32Derivation: [[pubKey2, bip1[1]]] }));
tx.updateOutput(0, { bip32Derivation: [bip1, bip2, bip3] });
// Preserves order (re-ordered on PSBT encoding)
deepStrictEqual(tx.outputs[0].bip32Derivation, [bip2, bip1, bip3]);
// PSBT encoding re-order k-v
const tx3 = btc.Transaction.fromPSBT(tx.toPSBT());
deepStrictEqual(tx3.outputs[0].bip32Derivation, [bip1, bip2, bip3]);
// Remove field
tx.updateOutput(0, { bip32Derivation: undefined });
deepStrictEqual(tx.outputs[0], {
script,
amount: 200n,
});
// Read outputs
for (let i = 0; i < tx.outputsLength; i++) {
console.log('O', tx.getOutput(i));
}
Basic transaction sign
const privKey = hex.decode('0101010101010101010101010101010101010101010101010101010101010101');
const txP2WPKH = new btc.Transaction();
for (const inp of TX_TEST_INPUTS) {
txP2WPKH.addInput({
txid: inp.txid,
index: inp.index,
witnessUtxo: {
amount: inp.amount,
script: btc.p2wpkh(secp256k1.getPublicKey(privKey, true)).script,
},
});
}
for (const [address, amount] of TX_TEST_OUTPUTS) txP2WPKH.addOutputAddress(address, amount);
deepStrictEqual(hex.encode(txP2WPKH.unsignedTx), RAW_TX_HEX);
txP2WPKH.sign(privKey);
txP2WPKH.finalize();
deepStrictEqual(txP2WPKH.id, 'cbb94443b19861df0824914fa654212facc071854e0df6f7388b482a6394526d');
deepStrictEqual(
txP2WPKH.hex,
'010000000001033edaa6c4e0740ae334dbb5857dd8c6faf6ea5196760652ad7033ed9031c261c00000000000ffffffff0d9ae8a4191b3ba5a2b856c21af0f7a4feb97957ae80725ef38a933c906519a20000000000ffffffffc7a4a37d38c2b0de3d3b3e8d8e8a331977c12532fc2a4632df27a89c311ee2fa0000000000ffffffff03e8030000000000001976a91406afd46bcdfd22ef94ac122aa11f241244a37ecc88ac881300000000000017a914a860f76561c85551594c18eecceffaee8c4822d7876b24000000000000160014e8df018c7e326cc253faac7e46cdc51e68542c4202473044022024e7b1a6ae19a95c69c192745db09cc54385a80cc7684570cfbf2da84cbbfa0802205ad55efb2019a1aa6edc03cf243989ea428c4d216699cbae2cfaf3c26ddef5650121031b84c5567b126440995d3ed5aaba0565d71e1834604819ff9c17f5e9d5dd078f0247304402204415ef16f341e888ca2483b767b47fcf22977b6d673c3f7c6cae2f6b4bc2ac08022055be98747345b02a6f40edcc2f80390dcef4efe57b38c1bb7d16bdbca710abfd0121031b84c5567b126440995d3ed5aaba0565d71e1834604819ff9c17f5e9d5dd078f02473044022069769fb5c97a7dd9401dbd3f6d32a38fe82bc8934c49c7c4cd3b39c6d120080c02202c181604203dc45c10e5290ded103195fae117d7fb0db19cdc411e73a76da6cb0121031b84c5567b126440995d3ed5aaba0565d71e1834604819ff9c17f5e9d5dd078f00000000'
);
BIP174 PSBT multi-sig example
const testnet = {
wif: 0xef,
bip32: {
public: 0x043587cf,
private: 0x04358394,
},
};
// The private keys in the tests below are derived from the following master private key:
const epriv =
'tprv8ZgxMBicQKsPd9TeAdPADNnSyH9SSUUbTVeFszDE23Ki6TBB5nCefAdHkK8Fm3qMQR6sHwA56zqRmKmxnHk37JkiFzvncDqoKmPWubu7hDF';
const hdkey = bip32.HDKey.fromExtendedKey(epriv, testnet.bip32);
// const seed = 'cUkG8i1RFfWGWy5ziR11zJ5V4U4W3viSFCfyJmZnvQaUsd1xuF3T';
const tx = new btc.Transaction();
// A creator creating a PSBT for a transaction which creates the following outputs:
tx.addOutput({
script: '0014d85c2b71d0060b09c9886aeb815e50991dda124d',
amount: btc.Decimal.decode('1.49990000'),
});
tx.addOutput({
script: '001400aea9a2e5f0f876a588df5546e8742d1d87008f',
amount: btc.Decimal.decode('1.00000000'),
});
// and spends the following inputs:
tx.addInput({
txid: '75ddabb27b8845f5247975c8a5ba7c6f336c4570708ebe230caf6db5217ae858',
index: 0,
});
tx.addInput({
txid: '1dea7cd05979072a3578cab271c02244ea8a090bbb46aa680a65ecd027048d83',
index: 1,
});
// must create this PSBT:
const psbt1 = tx.toPSBT();
// Given the above PSBT, an updater with only the following:
const tx2 = btc.Transaction.fromPSBT(psbt1);
tx2.updateInput(0, {
nonWitnessUtxo:
'0200000001aad73931018bd25f84ae400b68848be09db706eac2ac18298babee71ab656f8b0000000048473044022058f6fc7c6a33e1b31548d481c826c015bd30135aad42cd67790dab66d2ad243b02204a1ced2604c6735b6393e5b41691dd78b00f0c5942fb9f751856faa938157dba01feffffff0280f0fa020000000017a9140fb9463421696b82c833af241c78c17ddbde493487d0f20a270100000017a91429ca74f8a08f81999428185c97b5d852e4063f618765000000',
redeemScript:
'5221029583bf39ae0a609747ad199addd634fa6108559d6c5cd39b4c2183f1ab96e07f2102dab61ff49a14db6a7d02b0cd1fbb78fc4b18312b5b4e54dae4dba2fbfef536d752ae',
bip32Derivation: [
[
'029583bf39ae0a609747ad199addd634fa6108559d6c5cd39b4c2183f1ab96e07f',
{ fingerprint: hdkey.fingerprint, path: btc.bip32Path("m/0'/0'/0'") },
],
[
'02dab61ff49a14db6a7d02b0cd1fbb78fc4b18312b5b4e54dae4dba2fbfef536d7',
{ fingerprint: hdkey.fingerprint, path: btc.bip32Path("m/0'/0'/1'") },
],
],
});
tx2.updateInput(1, {
// use witness utxo ({script, amount})
witnessUtxo: btc.RawTx.decode(
hex.decode(
'0200000000010158e87a21b56daf0c23be8e7070456c336f7cbaa5c8757924f545887bb2abdd7501000000171600145f275f436b09a8cc9a2eb2a2f528485c68a56323feffffff02d8231f1b0100000017a914aed962d6654f9a2b36608eb9d64d2b260db4f1118700c2eb0b0000000017a914b7f5faf40e3d40a5a459b1db3535f2b72fa921e88702483045022100a22edcc6e5bc511af4cc4ae0de0fcd75c7e04d8c1c3a8aa9d820ed4b967384ec02200642963597b9b1bc22c75e9f3e117284a962188bf5e8a74c895089046a20ad770121035509a48eb623e10aace8bfd0212fdb8a8e5af3c94b0b133b95e114cab89e4f7965000000'
)
).outputs[1],
redeemScript: '00208c2353173743b595dfb4a07b72ba8e42e3797da74e87fe7d9d7497e3b2028903',
witnessScript:
'522103089dc10c7ac6db54f91329af617333db388cead0c231f723379d1b99030b02dc21023add904f3d6dcf59ddb906b0dee23529b7ffb9ed50e5e86151926860221f0e7352ae',
bip32Derivation: [
[
'03089dc10c7ac6db54f91329af617333db388cead0c231f723379d1b99030b02dc',
{ fingerprint: hdkey.fingerprint, path: btc.bip32Path("m/0'/0'/2'") },
],
[
'023add904f3d6dcf59ddb906b0dee23529b7ffb9ed50e5e86151926860221f0e73',
{ fingerprint: hdkey.fingerprint, path: btc.bip32Path("m/0'/0'/3'") },
],
],
});
tx2.updateOutput(0, {
bip32Derivation: [
[
'03a9a4c37f5996d3aa25dbac6b570af0650394492942460b354753ed9eeca58771',
{ fingerprint: hdkey.fingerprint, path: btc.bip32Path("m/0'/0'/4'") },
],
],
});
tx2.updateOutput(1, {
bip32Derivation: [
[
'027f6399757d2eff55a136ad02c684b1838b6556e5f1b6b34282a94b6b50051096',
{ fingerprint: hdkey.fingerprint, path: btc.bip32Path("m/0'/0'/5'") },
],
],
});
// Must create this PSBT:
const psbt2 = tx2.toPSBT();
// An updater which adds SIGHASH_ALL to the above PSBT must create this PSBT:
const tx3 = btc.Transaction.fromPSBT(psbt2);
for (let i = 0; i < tx3.inputs.length; i++) tx3.updateInput(i, { sighashType: btc.SigHash.ALL });
const psbt3 = tx3.toPSBT();
/*
Given the above updated PSBT, a signer that supports SIGHASH_ALL for P2PKH and P2WPKH spends and uses RFC6979 for nonce generation and has the following keys:
- cP53pDbR5WtAD8dYAW9hhTjuvvTVaEiQBdrz9XPrgLBeRFiyCbQr (m/0'/0'/0')
- cR6SXDoyfQrcp4piaiHE97Rsgta9mNhGTen9XeonVgwsh4iSgw6d (m/0'/0'/2')
*/
// We don't use HDKey, because it will everything because of bip32 derivation
const tx4 = btc.Transaction.fromPSBT(psbt3);
tx4.sign(btc.WIF(testnet).decode('cP53pDbR5WtAD8dYAW9hhTjuvvTVaEiQBdrz9XPrgLBeRFiyCbQr'));
tx4.sign(btc.WIF(testnet).decode('cR6SXDoyfQrcp4piaiHE97Rsgta9mNhGTen9XeonVgwsh4iSgw6d'));
// must create this PSBT:
const psbt4 = tx4.toPSBT();
// Given the above updated PSBT, a signer with the following keys:
// cT7J9YpCwY3AVRFSjN6ukeEeWY6mhpbJPxRaDaP5QTdygQRxP9Au (m/0'/0'/1')
// cNBc3SWUip9PPm1GjRoLEJT6T41iNzCYtD7qro84FMnM5zEqeJsE (m/0'/0'/3')
const tx5 = btc.Transaction.fromPSBT(psbt3);
tx5.sign(btc.WIF(testnet).decode('cT7J9YpCwY3AVRFSjN6ukeEeWY6mhpbJPxRaDaP5QTdygQRxP9Au'));
tx5.sign(btc.WIF(testnet).decode('cNBc3SWUip9PPm1GjRoLEJT6T41iNzCYtD7qro84FMnM5zEqeJsE'));
// must create this PSBT:
const psbt5 = tx5.toPSBT();
// Given both of the above PSBTs, a combiner must create this PSBT:
const psbt6 = btc.PSBTCombine([psbt4, psbt5]);
// Given the above PSBT, an input finalizer must create this PSBT:
const tx7 = btc.Transaction.fromPSBT(psbt6);
tx7.finalize();
const psbt7 = tx7.toPSBT();
// Given the above PSBT, a transaction extractor must create this Bitcoin transaction:
const tx8 = btc.Transaction.fromPSBT(psbt7);
deepStrictEqual(
tx8.extract(),
hex.decode(
'0200000000010258e87a21b56daf0c23be8e7070456c336f7cbaa5c8757924f545887bb2abdd7500000000da00473044022074018ad4180097b873323c0015720b3684cc8123891048e7dbcd9b55ad679c99022073d369b740e3eb53dcefa33823c8070514ca55a7dd9544f157c167913261118c01483045022100f61038b308dc1da865a34852746f015772934208c6d24454393cd99bdf2217770220056e675a675a6d0a02b85b14e5e29074d8a25a9b5760bea2816f661910a006ea01475221029583bf39ae0a609747ad199addd634fa6108559d6c5cd39b4c2183f1ab96e07f2102dab61ff49a14db6a7d02b0cd1fbb78fc4b18312b5b4e54dae4dba2fbfef536d752aeffffffff838d0427d0ec650a68aa46bb0b098aea4422c071b2ca78352a077959d07cea1d01000000232200208c2353173743b595dfb4a07b72ba8e42e3797da74e87fe7d9d7497e3b2028903ffffffff0270aaf00800000000160014d85c2b71d0060b09c9886aeb815e50991dda124d00e1f5050000000016001400aea9a2e5f0f876a588df5546e8742d1d87008f000400473044022062eb7a556107a7c73f45ac4ab5a1dddf6f7075fb1275969a7f383efff784bcb202200c05dbb7470dbf2f08557dd356c7325c1ed30913e996cd3840945db12228da5f01473044022065f45ba5998b59a27ffe1a7bed016af1f1f90d54b3aa8f7450aa5f56a25103bd02207f724703ad1edb96680b284b56d4ffcb88f7fb759eabbe08aa30f29b851383d20147522103089dc10c7ac6db54f91329af617333db388cead0c231f723379d1b99030b02dc21023add904f3d6dcf59ddb906b0dee23529b7ffb9ed50e5e86151926860221f0e7352ae00000000'
)
);
UTXO selection
UTXO selection is the process of choosing which UTXOs to use as inputs when making an on-chain bitcoin payment. The library:
- can create tx, integrated with the signer
- ensures change address is always specified
- supports bip69
- supports segwit + taproot
- calculates weight with good precision
- implements multiple strategies
Taproot estimation is precise, but you have to pass sighash if you want to use non-default one, because it changes signature size. For complex taproot trees you need to filter tapLeafScript to include only leafs which you can sign we estimate size with smallest leaf (same as finalization), but in specific case keys for this leaf can be unavailable (complex multisig)
Oldest
/ Newest
expects UTXO provided in historical order (oldest first),
otherwise we have no way to detect age of tx.
Strategies
Strategy selection is complicated. Best should be: exactBiggest/accumSmallest
.
exactBiggest/accumBiggest
creates tx with smallest fees,
but it breaks big outputs to small ones, which in the end will create
a lot of outputs close to dust.
default
: good for privacy, same asexactBiggest/accumBiggest
all
: send all coins to change address (consolidation)accum
: accumulates inputs until the target value (+fees) is reached, skipping detrimental inputsexact
: accumulates inputs until the target value (+fees) is matched, does not accumulate inputs that go over the target value (within a threshold)accumNewest
accumOldest
accumSmallest
accumBiggest
exactNewest/accumNewest
exactNewest/accumOldest
exactNewest/accumSmallest
exactNewest/accumBiggest
exactOldest/accumNewest
exactOldest/accumOldest
exactOldest/accumSmallest
exactOldest/accumBiggest
exactSmallest/accumNewest
exactSmallest/accumOldest
exactSmallest/accumSmallest
exactSmallest/accumBiggest
exactBiggest/accumNewest
exactBiggest/accumOldest
exactBiggest/accumSmallest
exactBiggest/accumBiggest
Example
const privKey = hex.decode('0101010101010101010101010101010101010101010101010101010101010101');
const pubKey = secp256k1.getPublicKey(privKey, true);
const spend = btc.p2wpkh(pubKey, regtest);
const utxo = [
{
...spend, // add witness/redeem scripts from spend
// Get txid, index from explorer/network
txid: hex.decode('0af50a00a22f74ece24c12cd667c290d3a35d48124a69f4082700589172a3aa2'),
index: 0,
// utxo tx information
// script can be used from spend itself or from explorer
witnessUtxo: { script: spend.script, amount: 100_000n }, // value in satoshi
},
{
...spend,
txid: hex.decode('0af50a00a22f74ece24c12cd667c290d3a35d48124a69f4082700589172a3aa2'),
index: 1,
witnessUtxo: { script: spend.script, amount: btc.Decimal.decode('1.5') }, // value in btc
},
// {
// ...spend,
// txid: hex.decode('75ddabb27b8845f5247975c8a5ba7c6f336c4570708ebe230caf6db5217ae858'),
// index: 0,
// // tx hex from blockchain (required for non-SegWit UTXO)
// nonWitnessUtxo: hex.decode(
// '0200000001aad73931018bd25f84ae400b68848be09db706eac2ac18298babee71ab656f8b0000000048473044022058f6fc7c6a33e1b31548d481c826c015bd30135aad42cd67790dab66d2ad243b02204a1ced2604c6735b6393e5b41691dd78b00f0c5942fb9f751856faa938157dba01feffffff0280f0fa020000000017a9140fb9463421696b82c833af241c78c17ddbde493487d0f20a270100000017a91429ca74f8a08f81999428185c97b5d852e4063f618765000000'
// ),
// },
];
const outputs = [
{ address: '2MvpbAgedBzJUBZWesDwdM7p3FEkBEwq3n3', amount: 50_000n }, // amount in satoshi
{
address: 'bcrt1pw53jtgez0wf69n06fchp0ctk48620zdscnrj8heh86wykp9mv20q7vd3gm',
amount: btc.Decimal.decode('0.5'), // amount in btc
},
];
// Send all utxo to specific address (consolidation):
// const selected = btc.selectUTXO(utxo, [], 'all', {
// changeAddress: 'bcrt1pea3850rzre54e53eh7suwmrwc66un6nmu9npd7eqrhd6g4lh8uqsxcxln8', ...
const selected = btc.selectUTXO(utxo, outputs, 'default', {
changeAddress: 'bcrt1pea3850rzre54e53eh7suwmrwc66un6nmu9npd7eqrhd6g4lh8uqsxcxln8', // required, address to send change
feePerByte: 2n, // require, fee per vbyte in satoshi
bip69: true, // lexicographical Indexing of Transaction Inputs and Outputs
createTx: true, // create tx with selected inputs/outputs
network: regtest,
});
// NOTE: 'selected' will 'undefined' if there is not enough funds
deepStrictEqual(selected.fee, 394n); // estimated fee
deepStrictEqual(selected.change, true); // change address used
deepStrictEqual(selected.outputs, [
{ address: '2MvpbAgedBzJUBZWesDwdM7p3FEkBEwq3n3', amount: 50000n },
{
address: 'bcrt1pw53jtgez0wf69n06fchp0ctk48620zdscnrj8heh86wykp9mv20q7vd3gm',
amount: 50_000_000n,
},
// Change address
// NOTE: with bip69 it is not necessarily last item in outputs
{
address: 'bcrt1pea3850rzre54e53eh7suwmrwc66un6nmu9npd7eqrhd6g4lh8uqsxcxln8',
amount: 99_949_606n,
},
]);
// No need to create tx manually!
const { tx } = selected;
tx.sign(privKey);
tx.finalize();
deepStrictEqual(tx.id, 'b702078d65edd65a84b2a97a669df5631b06f42a67b0d7090e540b02cc65aed5');
// real tx fee, can be bigger than estimated, since we expect signatures of maximal size
deepStrictEqual(tx.fee, 394n);
Ordinals and custom scripts
We support custom scripts. You can pass it as last argument to p2tr
.
We've developed separate micro-ordinals package, which contains:
- Real code for ordinals / inscriptions / runes
- CLI tool that allows to upload files as inscriptions
- Example usage of custom scripts
Utils
secp256k1 keys
import { pubSchnorr, signSchnorr } from '@scure/btc-signer/utils';
import { pubECDSA, signECDSA } from '@scure/btc-signer/utils';
import { randomPrivateKeyBytes } from '@scure/btc-signer/utils';
const priv = randomPrivateKeyBytes();
const pub = pubSchnorr(priv);
getAddress
Returns common addresses from privateKey
const privKey = hex.decode('0101010101010101010101010101010101010101010101010101010101010101');
deepStrictEqual(btc.getAddress('pkh', privKey), '1C6Rc3w25VHud3dLDamutaqfKWqhrLRTaD'); // P2PKH (legacy address)
deepStrictEqual(btc.getAddress('wpkh', privKey), 'bc1q0xcqpzrky6eff2g52qdye53xkk9jxkvrh6yhyw'); // SegWit V0 address
deepStrictEqual(
btc.getAddress('tr', priv),
'bc1p33wm0auhr9kkahzd6l0kqj85af4cswn276hsxg6zpz85xe2r0y8syx4e5t'
); // TapRoot KeyPathSpend
WIF
Encoding/decoding of WIF privateKeys. Only compressed keys are supported for now.
const privKey = hex.decode('0101010101010101010101010101010101010101010101010101010101010101');
deepStrictEqual(btc.WIF().encode(privKey), 'KwFfNUhSDaASSAwtG7ssQM1uVX8RgX5GHWnnLfhfiQDigjioWXHH');
deepStrictEqual(
hex.encode(btc.WIF().decode('KwFfNUhSDaASSAwtG7ssQM1uVX8RgX5GHWnnLfhfiQDigjioWXHH')),
'0101010101010101010101010101010101010101010101010101010101010101'
);
Script
Encoding/decoding bitcoin scripts
deepStrictEqual(
btc.Script.decode(
hex.decode(
'5221030000000000000000000000000000000000000000000000000000000000000001210300000000000000000000000000000000000000000000000000000000000000022103000000000000000000000000000000000000000000000000000000000000000353ae'
)
).map((i) => (P.isBytes(i) ? hex.encode(i) : i)),
[
'OP_2',
'030000000000000000000000000000000000000000000000000000000000000001',
'030000000000000000000000000000000000000000000000000000000000000002',
'030000000000000000000000000000000000000000000000000000000000000003',
'OP_3',
'CHECKMULTISIG',
]
);
deepStrictEqual(
hex.encode(
btc.Script.encode([
'OP_2',
hex.decode('030000000000000000000000000000000000000000000000000000000000000001'),
hex.decode('030000000000000000000000000000000000000000000000000000000000000002'),
hex.decode('030000000000000000000000000000000000000000000000000000000000000003'),
'OP_3',
'CHECKMULTISIG',
])
),
'5221030000000000000000000000000000000000000000000000000000000000000001210300000000000000000000000000000000000000000000000000000000000000022103000000000000000000000000000000000000000000000000000000000000000353ae'
);
OutScript
Encoding / decoding of output scripts
deepStrictEqual(
btc.OutScript.decode(
hex.decode(
'5221030000000000000000000000000000000000000000000000000000000000000001210300000000000000000000000000000000000000000000000000000000000000022103000000000000000000000000000000000000000000000000000000000000000353ae'
)
),
{
type: 'ms',
m: 2,
pubkeys: [
'030000000000000000000000000000000000000000000000000000000000000001',
'030000000000000000000000000000000000000000000000000000000000000002',
'030000000000000000000000000000000000000000000000000000000000000003',
].map(hex.decode),
}
);
deepStrictEqual(
hex.encode(
btc.OutScript.encode({
type: 'ms',
m: 2,
pubkeys: [
'030000000000000000000000000000000000000000000000000000000000000001',
'030000000000000000000000000000000000000000000000000000000000000002',
'030000000000000000000000000000000000000000000000000000000000000003',
].map(hex.decode),
})
),
'5221030000000000000000000000000000000000000000000000000000000000000001210300000000000000000000000000000000000000000000000000000000000000022103000000000000000000000000000000000000000000000000000000000000000353ae'
);
Security
The library has been independently audited:
- at version 0.3.0, in Feb 2023, by cure53
- PDFs: online, offline
- Changes since audit.
- The audit has been funded by Ryan Shea
UTXO selection functionality has not been audited yet. Commit 58d4554 split the library from one into several files to ease future maintainability.
Supply chain security
- Commits are signed with PGP keys, to prevent forgery. Make sure to verify commit signatures.
- Releases are transparent and built on GitHub CI. Make sure to verify provenance logs
- Rare releasing is followed. The less often it is done, the less code dependents would need to audit
- Dependencies are minimal:
- All deps are prevented from automatic updates and have locked-down version ranges. Every update is checked with
npm-diff
- Updates themselves are rare, to ensure rogue updates are not catched accidentally
- noble-hashes provides hashing functionality
- noble-curves provides elliptic curve cryptography
- scure-base provides bech32 / base64
- micro-packed provides binary encoding - it has not been audited
- All deps are prevented from automatic updates and have locked-down version ranges. Every update is checked with
- devDependencies are only used if you want to contribute to the repo. They are disabled for end-users:
- scure-bip32, micro-packed-debugger and micro-should are developed by the same author and follow identical security practices
- prettier (linter), fast-check (property-based testing) and typescript are used for code quality, vector generation and ts compilation. The packages are big, which makes it hard to audit their source code thoroughly and fully
We consider infrastructure attacks like rogue NPM modules very important; that's why it's crucial to minimize the amount of 3rd-party dependencies & native bindings. If your app uses 500 dependencies, any dep could get hacked and you'll be downloading malware with every install. Our goal is to minimize this attack vector.
If you see anything unusual: investigate and report.
License
MIT (c) Paul Miller (https://paulmillr.com), see LICENSE file.