npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

@sctg/sentencepiece-js

v1.3.3

Published

Sentencepiece tokenization for natural language processing, JS version.

Downloads

23

Readme

Javascript wrapper for the sentencepiece library

Build React App Publish to npmjs registry

Browser Demo

You can see Sentencepiece-js in action for counting and displaying tokens using the Meta Llama 3.1 tokenizer model on GitHub Pages: https://sctg-development.github.io/sentencepiece-js/. All computations are performed in your browser, and no data is sent to the server. To display the tokens, click on the tokens link.

This simple React app is located in the tokenCount directory of this repository. It is built with React 18, Vite, and the Fluent UI v9 framework.

Build

Sentencepiece is compiled to webassembly using emscripten.

To rebuild this project


npm install

git clone --recurse-submodules  https://github.com/sctg-development/sentencepiece-js.git

npm run build

Use

To use this tool in nodejs, you can use the following code:


const { SentencePieceProcessor, cleanText } = require("../dist");
const ROOT = require('app-root-path')

async function main() {

    let text = "I am still waiting on my card?"
    let cleaned = cleanText(text)

    let spp = new SentencePieceProcessor()
    await spp.load(`${ROOT}/test/30k-clean.model`)
    let ids = spp.encodeIds(cleaned)
    console.log(ids)
    let str = spp.decodeIds(ids) // list ids->number
    console.log(str)

    let pieces = spp.encodePieces(cleaned) // list tokens->string
    console.log(pieces)
}
main()

In the browser, you can use the following code (see the tokenCount directory for a full example):

import { SentencePieceProcessor, cleanText, llama_3_1_tokeniser_b64 } from "@sctg/sentencepiece-js";

// built in models: llama_3_1_tokeniser_b64, clean_30k_b64, smart_b64
async function main() {

    let text = "I am still waiting on my card?"
    let cleaned = cleanText(text)

    let spp = new SentencePieceProcessor()
    await spp.loadFromB64StringModel(llama_3_1_tokeniser_b64);
    let ids = spp.encodeIds(cleaned)
    console.log(ids)
    let str = spp.decodeIds(ids) // list ids->number
    console.log(str)

    let pieces = spp.encodePieces(cleaned) // list tokens->string
    console.log(pieces)
}
main()

See https://github.com/sctg-development/ai-outlook/blob/HEAD/src/aipane/aipane.ts#L11-L23 for an example of how to use this in a react app.
Look also at webpack.config.js for the configuration of the webpack bundler.

  • devilyouwei updated this repo to make this module support the js require keyword and added the using example.
  • 2023-1-10, devilyouwei added encodePieces.
  • original author: https://github.com/JanKaul/sentencepiece