npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

@reserve-protocol/token-zapper

v4.0.0-alpha29

Published

A library to help convert tokens into RTokens and back

Downloads

2,096

Readme

Reserve token Zapper

This is a TypeScript library that enables finding the best way to swap between any token and into an RToken for the Reserve protocol.

Installation

You can install the package using npm:

npm install @reserve-protocol/token-zapper

Usage

To use the library, import it in your TypeScript file:

import {
  createKyberswap,
  createParaswap,
  setupEthereumZapper,
  ethereumConfig,
  Universe,
} from '@reserve-protocol/token-zapper'
const zapperState = await Universe.createWithConfig(
  provider,
  ethereumConfig,
  async (uni) => {
    uni.addTradeVenue(createKyberswap('Kyber', uni))
    uni.addTradeVenue(createParaswap('paraswap', uni))

    await setupEthereumZapper(uni)
  }
)

// Zapper loads asynchroniously, you can wait the initialized promise to wait for it to fully bootstrap
await zapperState.initialized

// The the zapper state needs to be updated with every new block,
// because a lot of internal caching is bound to the current block, and gas price determines which zap is the best for the user
provider.on('block', async (blockNumber) => {
  await zapperState.updateBlockState(
    blockNumber,
    (await provider.getGasPrice()).toBigInt()
  )
})

After this setup, you can use the zapper to find a way to zap into an rToken, or zap redeem it into something else

const yourAddress = '0x.....'
const zapTx = await zapperState.zap(
  zapperState.commonTokens.USDC.from(1000.0),
  zapperState.rTokens.eUSD,
  yourAddress
)

// const zapTx = await zapperState.redeem(
//  zapperState.rTokens.eUSD.from(1000.0),
//  zapperState.commonTokens.USDC,
//  yourAddress
// );

// You can get an overview of the zap transaction by describing it:
console.log(zapTx.describe().join('\n'))
Transaction {
  zap: 100000.0 USDC (99995.0 USD) -> 99963.528513787400022714 eUSD (99970.38454138 USD) (+ $16.55167255 USD D.) @ fee: 128.34777376 USD,
  dust: [0.049995 USDC (0.049992 USD), 8.535761783034029767 sDAI (9.47060155 USD), 3.352562 saEthUSDC (3.643343 USD), 3.086402 wcUSDCv3 (3.387736 USD)],
  fees: 0.050437687161628416 ETH (128.34777376 USD) (2997536 wei)
  program: [
   // UniV3.exactInputSingle(USDC -> 0x6c6Bc977E13Df9b0de53b251522280BB72383700 -> DAI)
   cmd 0: j: uint256 = uniV3Router:delegate.exactInputSingle(
      amountIn = 25008600000,
      _expected = 25000348245652762919291,
      router = 0x68b3465833fb72A70ecDF485E0e4C7bD8665Fc45,
      encodedRouterCall = [len=514]0x000000000000000000000000a0b86991...00000000000000000000000000000000
   )

   // Curve,swap=24997.5 USDC -> 24993.40646 USDT,pools=0xbEbc44782C7dB0a1A60Cb6fe97d0b483032FF1C7, 0x6c3F90f043a72FA612cbac8115EE7e52BDe6E490, 0xd632f22692FaC7611d2AA1C0D552930D43CAEd3B, 0x4e0915C88bC70750D68C481540F081fEFaF22273, 0x99a58482BD75cbab83b27EC03CA68fF489b5788f
   cmd 1: amt_USDT: uint256 = curveRouterCall:delegate.exchange(
      amountIn = 24997500000,
      _expected = 24493538331,
      router = 0x99a58482BD75cbab83b27EC03CA68fF489b5788f,
      encodedRouterCall = [len=1666]0x000000000000000000000000a0b86991...00000000000000000000000000000000
   )

   cmd 2: q: uint256 = sDAI.deposit(assets = j, receiver = this)

   // IStaticATokenV3LM.deposit(24997.049987 USDC) # -> 23000.840107 saEthUSDC
   cmd 3: r: uint256 = saEthUSDC.deposit(assets = 24997049987, receiver = this, referralCode = 0, depositToAave = true)

   cmd 4: cUSDCv3.supplyTo(dst = this, asset = USDC, amount = 24996800018)

   cmd 5: bal_cUSDCv3: uint256 = cUSDCv3.balanceOf(account = this)

   cmd 6: wcUSDCv3.deposit(amount = bal_cUSDCv3)

   cmd 7: s: uint256 = cUSDT.mint(mintAmount = amt_USDT)

   cmd 8: bal_saEthUSDC: uint256 = saEthUSDC.balanceOf(account = this)

   cmd 9: bal_wcUSDCv3: uint256 = wcUSDCv3.balanceOf(account = this)

   cmd 10: bal_cUSDT: uint256 = balanceOf.balanceOf(token = cUSDT, account = this)

   cmd 11: this:delegate.mintMaxRToken(facade = oldFacade, token = eUSD, recipient = 0x684566C9FFcAC7F6A04C3a9997000d2d58C00824)

   cmd 12: emitId:delegate.emitId(id = 91849448683435942315573679291164280168546435124101316263424399347329429050949)

  ],
}

To execute your zap you just need to use the parametres in the zapTx:

const { to, data, value } = zapTx.transaction.tx

const signer = new ethers.Wallet([YOUR_PRIVATE_KEY], provider)
const { to, data, value } = zapTx.transaction.tx
const resp = await signer.sendTransaction({
  to,
  data,
  value,
})
console.log('Tx pending, hash: ', resp.hash)
const receipt = await resp.wait(1)
console.log('Your zap was' + receipt.status === 1 ? 'successfull!' : 'reverted')

console.log('See it here: https://etherscan.io/tx/' + resp.hash)

Running unit tests

You can run the unit tests by running npm run test:unit

Running integration tests

There is also an integration test suite, but it requires some setup to run.

The simulator uses the block diff rpc to sync the state of the simulator, this is an expensive operation when using node providers, so it is highly recommended to do so against a private RPC node. We recommend using reth for this, but geth based nodes are supported.

To run the simulator clone repo, compile it and run it locally.

Then set the SIM_URL environment variable to the URL of the simulator, e.g. http://localhost:7777

After an appropriate simulator is running, you can run the integration tests by running:

npm run eth:integration
npm run base:integration
npm run arbi:integration

Specific cases can be run by using a testPathPattern flag, e.g.

npm run integration:eth -- -t "issue" # runs all issueance tests
npm run integration:eth -- -t "redeem" # runs all redemption tests
npm run integration:eth -- -t "yield position" # runs all zap into yield position tests

npm run integration:eth -- -t "issue eUSD" # run issueance tests for eUSD
npm run integration:eth -- -t "redeem eUSD" # run redemption tests for eUSD
npm run integration:eth -- -t "yield position sdgnETH" # run zap into yield position tests for sdgnETH

Contributing

Contributions to this project are always welcome! Here are a few ways you can help:

Report bugs or issues by opening a new issue on the GitHub repository.
Implement new features by opening a pull request on the GitHub repository.
Improve the documentation by suggesting edits or additions.

Before submitting a pull request, please make sure your changes pass the existing tests and add new tests if necessary.

License

This project is licensed under the Blue Oak Model License - see the LICENSE file for details.