npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

@rayyamhk/matrix

v1.0.8

Published

A professional, comprehensive and high-performance library for you to manipulate matrices.

Downloads

2,385

Readme

Matrix.js

A professional, comprehensive and high-performance library for you to manipulate matrices.

Features

Install

npm install --save @rayyamhk/matrix

How to use

const Matrix = require('@rayyamhk/matrix');

const A = new Matrix([
  [1, 2],
  [3, 4],
]);
const B = new Matrix([
  [2, 3],
  [4, 5],
]);

const Sum = Matrix.add(A, B);
const [Q, R] = Matrix.QR(Sum);
const det = Sum.det();
const eigenvalues = Sum.eigenvalues();

Build

npm install
npm run build

It creates a production version in /lib

Test

npm install
npm run test

It runs all tests in /src/tests

API

You can find the documentation in the following link:

https://rayyamhk.github.io/Matrix.js/Matrix.html

Examples

constructor(A)

new Matrix([]); // 0x0 matrix

new Matrix([
  [1, 2, 3, 4],
]); // 1x4 matrix

new Matrix([
  [1],
  [2],
  [3],
]); // 3x1 matrix

new Matrix([
  [1, 2, 3],
  [4, 5, 6],
  [7, 8, 9],
]); // 3x3 matrix

Decompositions

LU(A, optimized)

const A = new Matrix([
  [4, 3],
  [6, 3],
]);

const [P, L, U] = Matrix.LU(A, false);
// P is [[0, 1], [1, 0]], L is [[1, 0], [2/3, 1]], U is [[6, 3], [0, 1]] and A = PLU.

const [P, LU] = Matrix.LU(A, true);
// P is [ 1, 0 ], LU = [[6, 3], [2/3, 1]]
// Note: P is an permutation array, L and U can be extracted from LU.

QR(A)

const A = new Matrix([
  [12, -51, 4],
  [6, 167, -68],
  [-4, 24, -41],
]);

const [Q, R] = Matrix.QR(A);
// Q is [[-0.8571, 0.3943, 0.3314], [-0.4286, -0.9029, -0.0343], [0.2857, -0.1714, 0.9429]],
// R is [[-14, -21, 14], [0, -175, 70], [0, 0, -35]],
// and A = QR

Linear-Equations

backward(U, y)

const A = new Matrix([
  [1, 2],
  [0, 3],
]);

const y = new Matrix([
  [1],
  [3],
]);

try {
  const x = Matrix.backward(A, y); // [[-1], [1]]
} catch (e) {
  console.log(e.message);
}

forward(L, y)

const A = new Matrix([
  [1, 0],
  [2, 3],
]);

const y = new Matrix([
  [1],
  [8],
]);

try {
  const x = Matrix.forward(A, y); // [[1], [2]]
} catch (e) {
  console.log(e.message);
}

solve(A, y)

const A = new Matrix([
  [1, 2],
  [3, 4],
]);

const y = new Matrix([
  [5],
  [11],
]);

try {
  const x = Matrix.solve(A, y); // [[1], [2]]
} catch (e) {
  console.log(e.message);
}

Operations

add(A, B)

const A = new Matrix([
  [1, 2],
  [3, 4],
]);

const B = new Matrix([
  [5, 6],
  [7, 8],
]);

const Sum = Matrix.add(A, B); // [[6, 8], [10, 12]]

inverse(A)

const A = new Matrix([
  [1, 2],
  [3, 4],
]);

try {
  const inv = Matrix.inverse(A); // [[-2, 1], [1.5, -0.5]]
} catch (e) {
  console.log(e.message);
}

multiply(A, B)

const A = new Matrix([
  [1, 2, 3],
  [4, 5, 6],
]);

const B = new Matrix([
  [-1, -2],
  [3, 4],
  [-5, -6],
]);

const Product = Matrix.multiply(A, B); // [[-10, -12], [-19, -24]]

pow(A, n)

const A = new Matrix([
  [2, 0],
  [0, 2],
]);

const Result = Matrix.pow(A, 10); // [[1024, 0], [0, 1024]]

subtract(A, B)

const A = new Matrix([
  [1, 2],
  [3, 4],
]);

const B = new Matrix([
  [4, 3],
  [2, 1],
]);

const Diff = Matrix.subtract(A, B); // [[-3, -1], [1, 3]]

transpose(A)

const A = new Matrix([
  [1, 2, 3],
  [4, 5, 6],
]);

const T = Matrix.transpose(A); // [[1, 4], [2, 5], [3, 6]]

Properties

cond(p = 2)

const A = new Matrix([
  [1, 2, 3],
  [4, 5, 6],
  [1, 2, 7],
]);

A.cond(1); // 64
A.cond(2); // 32.844126527227147
A.cond(Infinity); // 42.4999,
A.cond('F'); // 34.117851306578174

det()

const A = new Matrix([
  [1, 3, 5, 9],
  [1, 3, 1, 7],
  [4, 3, 9, 7],
  [5, 2, 0, 9],
]);

A.det(); // -376

eigenvalues()

Note that eigenvalues are instance of Complex. For more details, please check the documentation here

const A = new Matrix([
  [13, -12, 6, -9],
  [1, -11, -13, 0],
  [-6, -2, 15, -6],
  [14, -8, 1, 11],
]);

const eigenvalues = A.eigenvalues();
eigenvalues.forEach((eigenvalue) => {
  console.log(eigenvalue.toString()); // Instance method of Complex
});

// Result: '10.7046681565572', '-12.9152701010176', '15.1053009722302 + 14.3131819845827i', '15.1053009722302 - 14.3131819845827i'

norm(p)

const A = new Matrix([
  [1, 7, -5, 2, -7],
  [-8, 0, 2, 9, 4],
  [3, 4, 9, 6, 5],
]);
A.norm(1); // 17
A.norm(2); // 15.849881886952135
A.norm(Infinity); // 27
A.norm('F'); // 21.447610589527216

nullity()

const A = new Matrix([
  [0, 1, 2],
  [1, 2, 1],
  [2, 7, 8],
]);

A.nullity(); // 1

rank()

const A = new Matrix([
  [0, 1, 2],
  [1, 2, 1],
  [2, 7, 8],
]);

A.rank(); // 2

size()

const A = new Matrix([
  [0, 1, 2, 3],
  [4, 5, 6, 7],
]);

const [row, col] = A.size(); // 2, 4

trace()

const A = new Matrix([
  [1, 2, 3],
  [4, 5, 6],
  [7, 8, 9],
]);

A.trace(); // 15

Structure

isDiagonal(digit = 8)

const A = new Matrix([
  [1, 0, 0],
  [0, 5, 0],
  [0, 0, -3],
]);

const B = new Matrix([
  [1, 0, 0.1],
  [0, 5, 0],
  [0, 0, -3],
]);

A.isDiagonal(); // true
B.isDiagonal(); // false

isLowerTriangular(digit = 8)

const A = new Matrix([
  [6, 0, 0, 0],
  [1, -5, 0, 0],
  [2, 30, 1, 0],
]);

A.isLowerTriangular(); // true

isOrthogonal(digit = 8)

const Reflection = new Matrix([
  [1, 0],
  [0, -1],
]);

Reflection.isOrthongonal(); // true

isSkewSymmetric(digit = 8)

const A = new Matrix([
  [1, 2, 3, 4],
  [-2, 2, -4, 5],
  [-3, 4, 100, 10],
  [-4, -5, -10, 5],
]);

A.isSkewSymmetric(); // true

isSquare()

const A = new Matrix([
  [1, 2],
  [3, 4],
]);
A.isSquare(); // true

isSymmetric(digit = 8)

const A = new Matrix([
  [1, 4, 3],
  [4, 5, 4],
  [3, 4, 5],
]);

A.isSymmetric(); // true

isUpperTriangular(digit = 8)

const A = new Matrix([
  [6, 0, 1, 5],
  [0, -5, 4, 7],
  [0, 0, 1, 2],
]);

A.isUpperTriangular(); // true

Utilities

clone(A)

const A = new Matrix([
  [1, 2],
  [3, 4],
]);

Matrix.clone(A); // [[1, 2], [3, 4]]

column(A, index)

const A = new Matrix([
  [1, 2],
  [3, 4],
  [5, 6],
]);

Matrix.column(A, 0); // [[1], [3], [5]]
Matrix.column(A, 1); // [[2], [4], [6]]

diag(values)

Matrix.diag([1, 2, 3]); // [[1, 0, 0], [0, 2, 0], [0, 0, 3]]

const values = [
  new Matrix([
    [1, 2],
    [3, 4],
  ]),
  new Matrix([
    [5, 6],
    [7, 8],
  ])
];

Matrix.diag(values); // [[1, 2, 0, 0], [3, 4, 0, 0], [0, 0, 5, 6], [0, 0, 7, 8]]

elementwise(A, cb)

Matrix.elementwise(A, (entry) => entry * 2); // element-wise multiplication
Matrix.elementwise(A, (entry) => entry ** 2); // element-wise power
Matrix.elementwise(A, (entry) => entry - 10); // element-wise subtraction

entry(row, col)

const A = new Matrix([
  [1, 2],
  [3, 4],
]);

A.entry(0, 0); // 1
A.entry(0, 1); // 2
A.entry(1, 0); // 3
A.entry(1, 1); // 4

flatten()

const matrix = new Matrix([
  [1, 2, 3],
  [4, 5, 6],
  [7, 8, 9],
]);
const myArray = matrix.flatten(); // [1, 2, 3, 4, 5, 6, 7, 8, 9]

fromArray(arr, row, col)

const myArray = [1, 2, 3, 4, 5, 6, 7, 8];
const matrix = Matrix.fromArray(myArray, 2, 4); // [[1, 2, 3, 4], [5, 6, 7, 8]]

generate(row, col, cb)

Matrix.generate(3, 3, () => 0); // 3 x 3 zero matrix
Matrix.generate(3, 3, (i, j) => 1 / (i + j + 1)); // 3 x 3 Hilbert matrix
Matrix.generate(3, 3, (i, j) => i >= j ? 1 : 0); // 3 x 3 lower triangular matrix

getDiag(A)

const A = new Matrix([
  [1, 2, 3, 4],
  [5, 6, 7, 8],
]);

Matrix.getDiag(A); // [1, 6]

getRandomMatrix(row, col, min = 0, max = 1, toFixed = 0)

Matrix.getRandomMatrix(3, 4, -10, 10, 2); // 3 x 4 matrix which entries are bounded by -10 and 10 and has 2 decimal places

identity(size)

Matrix.identity(2); // 2 x 2 identity matrix
Matrix.identity(10); // 10 x 10 identity matrix

isEqual(A, B, digit = 5)

const A = new Matrix([
  [1, 2],
  [3, 4],
]);

const B = new Matrix([
  [1, 2],
  [3, 4 + 10e-10],
]);

Matrix.isEqual(A, B); // true

const C = new Matrix([
  [1, 2],
  [3, 4 + 10e-2],
]);

Matrix.isEqual(A, C); // false

row(A, index)

const A = new Matrix([
  [1, 2, 3],
  [4, 5, 6],
]);

Matrix.row(A, 0); // [[1, 2, 3]]
Matrix.row(A, 1); // [[4, 5, 6]]

submatrix(A, rowsExp, colsExp)

const A = new Matrix([
  [1, 2, 3],
  [4, 5, 6],
  [7, 8, 9],
]);

Matrix.submatrix(A, 0, 1); // [[2]], row 0 & column 1
Matrix.submatrix(A, '0:1', 1); // [[1], [4]], row 0 + row 1 & column 1
Matrix.submatrix(A, '0:1', '0:1'); // [[1, 2], [4, 5]], row 0 + row 1 & column 0 + column 1
Matrix.submatrix(A, ':', '1:2'); // [[2, 3], [5, 6], [8,9]], all rows && column 1 + column 2
Matrix.submatrix(A, ':', ':'); // same with A

toString()

const A = new Matrix([
  [1, 2, 3],
  [4, 5, 6],
  [7, 8, 9],
]);

A.toString(); // '1 2 3\n4 5 6\n7 8 9'
// 1 2 3
// 4 5 6
// 7 8 9

zero(row, col)

Matrix.zero(3, 4); // 3 x 4 zero matrix
Matrix.zero(10, 1); // 10 x 1 zero matrix

How to contribute

You are welcome to contribute by:

  • Reporting bugs
  • Fixing bugs
  • Adding new features
  • Improving performance
  • Improving code style of this library

License

MIT