npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

@rayyamhk/complex

v1.0.12

Published

A lightweight and easy-to-use library for you to manipulate complex numbers

Downloads

2,376

Readme

Complex.js

A lightweight and easy-to-use library for you to manipulate complex numbers

Features

  • Lightweight
  • Comprehensive
  • Easy to use
  • No dependencies
  • 1000+ Test cases
  • No INFINITY!!

Install

npm install --save @rayyamhk/complex

How to use

const Complex = require('@rayyamhk/complex');

const num1 = new Complex(3, 4); // 3 + 4i
const num2 = new Complex(-2); // -2 + 0i
const sum = Complex.add(num1, num2);
console.log(sum.toString()); // '1 + 4i'

Build

npm install
npm run build

It creates a production version in /build

Test

npm install
npm run test

It runs all tests in /lib/tests

API

You can find the documentation in the following link:

https://rayyamhk.github.io/Complex.js/Complex.html

Examples

constructor(re, im)

new Complex(); // Complex.NaN
new Complex(3); // 3 + 0i
new Complex(Infinity); // Complex.NaN
new Complex('3'); // Complex.NaN
new Complex(3, 4); // 3 + 4i
new Complex(3, Infinity); // Complex.NaN

Instance methods

getReal()

new Complex(3, 4).getReal(); // 3
new Complex(0, 1).getReal(); // 0

getImaginary()

new Complex(3, 4).getImaginary(); // 4
Complex.ZERO.getImaginary(); // 0

getModulus()

new Complex(3, 4).getModulus(); // 5
Complex.ZERO.getModulus(); // 0

getArgument()

new Complex(3, 3).getArgument(); // π/4
Complex.ZERO.getArgument(); // undefined

toString()

new Complex(3, 4).toString(); // '3 + 4i'
new Complex(3.1415).toString(); // '3.1415'
Complex.NaN.toString(); // 'NaN'

Static methods

isNaN(num)

Complex.isNaN(new Complex(3)); // false
Complex.isNaN(new Complex(3, 4)); // false
Complex.isNaN(new Complex(Infinity)); // true
Complex.isNaN(Complex.NaN); // true

isEqual(num1, num2, digit = 15)

const num1 = new Complex(3, 4);
const num2 = new Complex(3 + 4e-16, 4);
const num3 = new Complex(3 + 4e-16, 4 + 6e-16);
Complex.isEqual(num1, num2); // true as the diff of real parts is less than 5e-16
Complex.isEqual(num1, num3); // false as the diff of imaginary parts is greater than 5e-16

Complex.isEqual(Complex.NaN, new Complex(1 / 0)); // true as both are considered as NaN

4 basic operations

const num1 = new Complex(3, 4);
const num2 = new Complex(-1, 2);

Complex.add(num1, num2); // 2 + 6i
Complex.subtract(num1, num2); // 4 + 2i
Complex.multiply(num1, num2); // -11 + 2i
Complex.divide(num1, num2); // 1 - 2i
Complex.divide(num1, Complex.ZERO); // Complex.NaN

conjugate(num)

Complex.conjugate(new Complex(3, 4)); // 3 - 4i
Complex.conjugate(new Complex(3, -4)); // 3 + 4i
Complex.conjugate(new Complex(-3, 4)); // -3 - 4i
Complex.conjugate(new Complex(3)); // 3 - 0i
Complex.conjugate(Complex.NaN); // Complex.NaN

inverse(num)

Complex.inverse(new Complex(3, 4)); // 3 / 25 - 4i / 25
Complex.inverse(Complex.ZERO); // Complex.NaN

pow(base, exponent)

Complex.pow(z, 2); // z to the power of 2
Complex.pow(z, 1.234); // z to the power of 1.234
Complex.pow(z, 0); // Complex.ONE
Complex.pow(z, -2); // 1 divided by z to the power of 2
Complex.pow(z, 1 / 4); // one of the 4-th root of z

exp(num)

Complex.exp(Complex.ZERO); // Complex.ONE
Complex.exp(new Complex(3, 4)); // -13.128783... - 15.200784463...i

log(num)

Complex.log(Complex.E); // Complex.ONE
Complex.log(Complex.ZERO); // Complex.NaN

6 trigonometric functions

Complex.sin(num); // Domain: entire complex plane C
Complex.cos(num); // Domain: entire complex plane C

Complex.tan(num); // Domain: entire complex plane C except the set { (2k+1)*π/2 : k is any integer }
Complex.tan(new Complex(Math.PI / 2)); // Complex.NaN

Complex.csc(num); // Domain: entire complex plane C except the set { kπ : k is any integer }
Complex.csc(Complex.ZERO); // Complex.NaN

Complex.sec(num); // Domain: entire complex plane C except the set { (2k+1)*π/2 : k is any integer }
Complex.sec(new Complex(Math.PI / 2)); // Complex.NaN

Complex.cot(num); // Domain: entire complex plane C except the set { kπ/2 : k is any integer }
Complex.cot(Complex.PI); // Complex.NaN

6 inverse of trigonometric functions

Complex.asin(num); // Domain: entire complex plane C
Complex.acos(num); // Domain: entire complex plane C
Complex.atan(num); // Domain: entire complex plane C except the set { i, -i }
Complex.acsc(num); // Domain: entire complex plane C except the set { 0 }
Complex.asec(num); // Domain: entire complex plane C except the set { 0 }
Complex.acot(num); // Domain: entire complex plane C except the set { i, -i , 0 }

How to contribute

You are welcome to contribute by:

  • Reporting bugs
  • Fixing bugs
  • Adding new features
  • Improving performance
  • Improving code style of this library

License

MIT