@prairielearn/opentelemetry
v2.1.5
Published
Opinionated wrapper around various `@opentelemetry/*` packages.
Downloads
153
Readme
@prairielearn/opentelemetry
Opinionated wrapper around various @opentelemetry/*
packages.
Usage
You should require this package as early as possible during application initialization and call init()
once the application configuration is available.
import { init } from '@prairielearn/opentelemetry';
// ...
await init({
openTelemetryEnabled: true,
openTelemetryExporter: 'honeycomb',
openTelemetryMetricExporter: 'honeycomb',
openTelemetryMetricExportIntervalMillis: 30_000,
openTelemetrySamplerType: 'always-on',
openTelemetrySampleRate: 0.1,
honeycombApiKey: 'KEY',
honeycombDataset: 'DATASET',
});
This will automatically instrument a variety of commonly-used Node packages.
When using code from the OpenTelemetry libraries, make sure you import it via @prairielearn/opentelemetry
instead of installing it separately to ensure that there is only one version of each OpenTelemetry package in use at once. If the desired functionality is not yet exported, please add it!
Traces
To easily instrument individual pieces of functionality, you can use the instrumented()
helper function:
import { instrumented } from '@prairielearn/opentelemetry';
async function doThing() {
return instrumented('span.name', async (span) => {
span.setAttribute('attribute.name', 'value');
await doThing();
});
}
This will automatically set the span status and record any exceptions that occur.
If you have a more complex use case, you can manually instrument code with the trace
export:
import { trace, SpanStatusCode } from '@prairielearn/opentelemetry';
const tracer = trace.getTracer('default');
await tracer.startActiveSpan('span.name', async (span) => {
try {
await doWork();
span.setStatus({ status: SpanStatusCode.OK });
} catch (err) {
span.recordException(err);
span.setStatus({
status: SpanStatusCode.ERROR,
message: err.message,
});
throw err;
}
});
Metrics
You can manually create counters and other metrics with the following functions
getHistogram
getCounter
getUpDownCounter
getObservableCounter
getObservableUpDownCounter
getObservableGauge
import { metrics, getCounter, ValueType } from '@prairielearn/opentelemetry';
function handleRequest(req, res) {
const meter = metrics.getMeter('meter-name');
const requestCounter = getCounter(meter, 'request.count', {
valueType: ValueType.INT,
});
requestCounter.add(1);
}
You can also use the instrumentedWithMetrics
helper to automatically capture a duration histogram and error count:
import { metrics, instrumentedWithMetrics } from '@prairielearn/opentelemetry';
const meter = metrics.getMeter('meter-name');
await instrumentedWithMetrics(meter, 'operation.name', async () => {
const random = Math.random() * 1000;
await new Promise((resolve) => setTimeout(resolve, random));
if (random > 900) {
throw new Error('Failed!');
}
});
To capture statistics about a constantly changing value (for instance, the size of a database connection pool), you can use createObservableValueGauges
. This will "observe" your chosen value on a regular interval and collect the min/max/average of that value for each metrics collection interval.
import { metrics, createObservableValueGauges } from '@prairielearn/opentelemetry';
const meter = metrics.getMeter('meter-name');
createObservableValueGauges(
meter,
'db.pool.size',
{
// The interval that your value will be observed, in milliseconds.
interval: 1000,
},
() => pool.size,
);