@orq-ai/node
v2.14.4
Published
orq.ai Typescript SDK
Downloads
1,649
Readme
Build AI Applications from Playground to Production
orq.ai Node SDK
The orq.ai Node library enables easy orq.ai REST API integration in NodeJS 16+ apps.
Documentation
The REST API documentation can be found on docs.orq.ai.
Installation
npm install @orq-ai/node
yarn add @orq-ai/node
Usage
You can get your workspace API key from the settings section in your orq.ai workspace. https://my.orq.ai/<workspace>/settings/developers
Initialize the orq.ai client with your API key:
import { createClient } from '@orq-ai/node';
const client = createClient({
apiKey: 'orquesta-api-key',
environment: 'production',
});
generation = await client.deployments.invoke(
key: 'customer_service',
context: { environments: 'production', country: 'NLD' },
inputs: { firstname: 'John', city: 'New York' },
metadata: { customer_id: 'Qwtqwty90281' },
);
Deployments
The Deployments API delivers text outputs, images or tool calls based on the configuration established within orq.ai for your deployments. Additionally, this API supports streaming. To ensure ease of use and minimize errors, using the code snippets from the orq.ai Admin panel is highly recommended.
Invoke a deployment
invoke()
const generation = await client.deployments.invoke({
key: 'customer_service',
context: { environments: 'production', country: 'NLD' },
inputs: { firstname: 'John', city: 'New York' },
metadata: { customer_id: 'Qwtqwty90281' },
});
console.log(generation?.choices[0].message.content);
invoke_with_stream()
const deployment = await client.deployments.invoke({
key: 'customer_service',
context: { environments: 'production', country: 'NLD' },
inputs: { firstname: 'John', city: 'New York' },
metadata: { customer_id: 'Qwtqwty90281' },
});
for await (const chunk of stream) {
console.log(chunk.choices[0]?.message.content);
}
Adding messages as part of your request
If you are using the invoke
method, you can include messages
in your request to the model. The messages
property
allows you to combine chat_history
with the prompt configuration in Orq, or to directly send messages
to the
model if you are managing the prompt in your code.
generation = await client.deployments.invoke(
key: 'customer_service',
context:{
language: [],
environments: [],
},
metadata: {
'custom-field-name': 'custom-metadata-value',
},
inputs:{ firstname: 'John', city: 'New York' },
messages: [
{
role: 'user',
content:
'A customer is asking about the latest software update features. Generate a detailed and informative response highlighting the key new features and improvements in the latest update.',
},
]
);
Logging metrics to the deployment configuration
After invoking, streaming or getting the configuration of a deployment, you can use the add_metrics
method to add information to the deployment.
generation.addMetrics({
user_id: 'e3a202a6-461b-447c-abe2-018ba4d04cd0',
feedback: { score: 100 },
metadata: {
custom: 'custom_metadata',
chain_id: 'ad1231xsdaABw',
},
});
Get deployment configuration
get_config()
const deploymentPromptConfig = await client.deployments.getConfig({
key: 'customer_service',
context: { environments: 'production', country: 'NLD' },
inputs: { firstname: 'John', city: 'New York' },
metadata: { customer_id: 'Qwtqwty90281' },
});
console.log(deploymentPromptConfig);
Logging metrics to the deployment configuration
After invoking, streaming or getting the configuration of a deployment, you can use the add_metrics
method to add information to the deployment.
deploymentPromptConfig.addMetrics({
chain_id: 'c4a75b53-62fa-401b-8e97-493f3d299316',
user_id: 'e3a202a6-461b-447c-abe2-018ba4d04cd0',
feedback: { score: 100 },
metadata: {
custom: 'custom_metadata',
chain_id: 'ad1231xsdaABw',
},
usage: {
prompt_tokens: 100,
completion_tokens: 900,
total_tokens: 1000,
},
performance: {
latency: 9000,
time_to_first_token: 250,
},
});
Logging LLM responses
Whether you use the get_config
or invoke
, you can log the model generations to the deployment. Here are some
examples of how to do it.
Logging the completion choices the model generated for the input prompt
generation.addMetrics(
choices:[
{
index: 0,
finish_reason: 'assistant',
message: {
role: 'assistant',
content:
"Dear customer: Thank you for your interest in our latest software update! We're excited to share with you the new features and improvements we've rolled out. Here's what you can look forward to in this update",
},
},
]
);
Logging the completion choices the model generated for the input prompt
You can save the images generated by the model in Orq. If the image format is base64
we always store it as
a png
.
generation.addMetrics(
choices: [
{
index: 0,
finish_reason: 'stop',
message: {
role: 'assistant',
url: '<image_url>',
},
},
]
);
Logging the output of the tool calls
generation.addMetrics(
choices: [
{
index: 0,
message: {
role: 'assistant',
content: None,
tool_calls: [
{
type: 'function',
id: 'call_pDBPMMacPXOtoWhTWibW1D94',
function: {
name: 'get_weather',
arguments: '{"location":"San Francisco, CA"}',
},
},
],
},
finish_reason: 'tool_calls',
},
]
);