npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

@orama/orama

v3.0.4

Published

A complete search engine and RAG pipeline in your browser, server, or edge network with support for full-text, vector, and hybrid search in less than 2kb.

Downloads

141,699

Readme

Tests

If you need more info, help, or want to provide general feedback on Orama, join the Orama Slack channel

Highlighted features

Installation

You can install Orama using npm, yarn, pnpm, bun:

npm i @orama/orama

Or import it directly in a browser module:

<html>
  <body>
    <script type="module">
      import { create, insert, search } from 'https://cdn.jsdelivr.net/npm/@orama/orama@latest/+esm'
    </script>
  </body>
</html>

With Deno, you can just use the same CDN URL or use npm specifiers:

import { create, search, insert } from 'npm:@orama/orama'

Read the complete documentation at https://docs.orama.com.

Orama Features

Usage

Orama is quite simple to use. The first thing to do is to create a new database instance and set an indexing schema:

import { create, insert, remove, search, searchVector } from '@orama/orama'

const db = create({
  schema: {
    name: 'string',
    description: 'string',
    price: 'number',
    embedding: 'vector[1536]', // Vector size must be expressed during schema initialization
    meta: {
      rating: 'number',
    },
  },
})

insert(db, {
  name: 'Noise cancelling headphones',
  description: 'Best noise cancelling headphones on the market',
  price: 99.99,
  embedding: [0.2432, 0.9431, 0.5322, 0.4234, ...],
  meta: {
    rating: 4.5
  }
})

const results = search(db, {
  term: 'Best headphones'
})

// {
//   elapsed: {
//     raw: 21492,
//     formatted: '21μs',
//   },
//   hits: [
//     {
//       id: '41013877-56',
//       score: 0.925085832971998432,
//       document: {
//         name: 'Noise cancelling headphones',
//         description: 'Best noise cancelling headphones on the market',
//         price: 99.99,
//         embedding: [0.2432, 0.9431, 0.5322, 0.4234, ...],
//         meta: {
//           rating: 4.5
//         }
//       }
//     }
//   ],
//   count: 1
// }

Orama currently supports 10 different data types:

| Type | Description | Example | | ---------------- | --------------------------------------------------------------------------- | --------------------------------------------------------------------------- | | string | A string of characters. | 'Hello world' | | number | A numeric value, either float or integer. | 42 | | boolean | A boolean value. | true | | enum | An enum value. | 'drama' | | geopoint | A geopoint value. | { lat: 40.7128, lon: 74.0060 } | | string[] | An array of strings. | ['red', 'green', 'blue'] | | number[] | An array of numbers. | [42, 91, 28.5] | | boolean[] | An array of booleans. | [true, false, false] | | enum[] | An array of enums. | ['comedy', 'action', 'romance'] | | vector[<size>] | A vector of numbers to perform vector search on. | [0.403, 0.192, 0.830] |

Vector and Hybrid Search Support

Orama supports both vector and hybrid search by just setting mode: 'vector' when performing search.

To perform this kind of search, you'll need to provide text embeddings at search time:

import { create, insertMultiple, search } from '@orama/orama'

const db = create({
  schema: {
    title: 'string',
    embedding: 'vector[5]'', // we are using a 5-dimensional vector.
  },
});

insertMultiple(db, [
  { title: 'The Prestige', embedding: [0.938293, 0.284951, 0.348264, 0.948276, 0.56472] },
  { title: 'Barbie', embedding: [0.192839, 0.028471, 0.284738, 0.937463, 0.092827] },
  { title: 'Oppenheimer', embedding: [0.827391, 0.927381, 0.001982, 0.983821, 0.294841] },
])

const results = search(db, {
  // Search mode. Can be 'vector', 'hybrid', or 'fulltext'
  mode: 'vector',
  vector: {
    // The vector (text embedding) to use for search
    value: [0.938292, 0.284961, 0.248264, 0.748276, 0.26472],
    // The schema property where Orama should compare embeddings
    property: 'embedding',
  },
  // Minimum similarity to determine a match. Defaults to `0.8`
  similarity: 0.85,
  // Defaults to `false`. Setting to 'true' will return the embeddings in the response (which can be very large).
  includeVectors: true,
})

Have trouble generating embeddings for vector and hybrid search? Try our @orama/plugin-embeddings plugin!

import { create } from '@orama/orama'
import { pluginEmbeddings } from '@orama/plugin-embeddings'
import '@tensorflow/tfjs-node' // Or any other appropriate TensorflowJS backend, like @tensorflow/tfjs-backend-webgl

const plugin = await pluginEmbeddings({
  embeddings: {
    // Schema property used to store generated embeddings
    defaultProperty: 'embeddings',
    onInsert: {
      // Generate embeddings at insert-time
      generate: true,
      // properties to use for generating embeddings at insert time.
      // Will be concatenated to generate a unique embedding.
      properties: ['description'],
      verbose: true,
    }
  }
})

const db = create({
  schema: {
    description: 'string',
    // Orama generates 512-dimensions vectors.
    // When using @orama/plugin-embeddings, set the property where you want to store embeddings as `vector[512]`.
    embeddings: 'vector[512]'
  },
  plugins: [plugin]
})

// Orama will generate and store embeddings at insert-time!
await insert(db, { description: 'Classroom Headphones Bulk 5 Pack, Student On Ear Color Varieties' })
await insert(db, { description: 'Kids Wired Headphones for School Students K-12' })
await insert(db, { description: 'Kids Headphones Bulk 5-Pack for K-12 School' })
await insert(db, { description: 'Bose QuietComfort Bluetooth Headphones' })

// Orama will also generate and use embeddings at search time when search mode is set to "vector" or "hybrid"!
const searchResults = await search(db, {
  term: 'Headphones for 12th grade students',
  mode: 'vector'
})

Want to use OpenAI embedding models? Use our Secure Proxy plugin to call OpenAI from the client-side securely.

RAG and Chat Experiences with Orama

Since v3.0.0, Orama allows you to create your own ChatGPT/Perplexity/SearchGPT-like experience. You will need to call the OpenAI APIs, so we strongly recommend using the Secure Proxy Plugin to do that securely from your client side. It's free!

import { create, insert } from '@orama/orama'
import { pluginSecureProxy } from '@orama/plugin-secure-proxy'

const secureProxy = await pluginSecureProxy({
  apiKey: 'my-api-key',
  defaultProperty: 'embeddings',
  models: {
    // The chat model to use to generate the chat answer
    chat: 'openai/gpt-4o-mini'
  }
})

const db = create({
  schema: {
    name: 'string'
  },
  plugins: [secureProxy]
})

insert(db, { name: 'John Doe' })
insert(db, { name: 'Jane Doe' })

const session = new AnswerSession(db, {
  // Customize the prompt for the system
  systemPrompt: 'You will get a name as context, please provide a greeting message',
  events: {
    // Log all state changes. Useful to reactively update a UI on a new message chunk, sources, etc.
    onStateChange: console.log,
  }
})

const response = await session.ask({
  term: 'john'
})

console.log(response) // Hello, John Doe! How are you doing?

Read the complete documentation here.

Official Docs

Read the complete documentation at https://docs.orama.com/open-source.

Official Orama Plugins

Write your own plugin: https://docs.orama.com/open-source/plugins/writing-your-own-plugins

License

Orama is licensed under the Apache 2.0 license.