@openinterface/knowledge
v0.0.12
Published
ai agent knowledge base management tool
Downloads
9
Maintainers
Readme
Overview
@openinterface/knowledge
npm package repo- say hi 👋 @n_raidenai
knowledge
- agent tool to autonomously learn how to use APIs, SDKs, infra tools , ...
- collects documentation for RAG, as it enables
- crawling docs websites
- crawling github repos for readmes, npm from package name
- searching for use cases (via serper) from a single query
- parse openapi/swagger definitions from urls
- automatically manages vectorizing , embedding , indexing , concurrency
- has local index powered by
@electric-sql/pglite
andpgvector
- (wip) post processes collected documents to clean up and improve formatting
- (wip) stores in remote index dbs (like supabase , weaviate , ... )
Installation
npm install @openinterface/knowledge
Usage
make a .env file, ensure it has these values
OPENAI_API_KEY = "REPLACE_KEY" # required
SERPER_API_KEY = "REPLACE_KEY" # to enable knowledge.collect.learn feature
SERPER_SEARCH_QUERIES = 2 # search queries per learn operation (if enabled)
GITHUB_API_KEY = "REPLACE_KEY" # to enable knowledge.collect.github feature
#PROXY_URL = http://your_proxy_url:port # optional , for scraping / crawling pages
import as follows
import knowledge from '@openinterface/knowledge';
Use Case Examples
import knowledge from '@openinterface/knowledge';
// ====================================================================
// FETCHING DOCS / DATA + EMBEDDING RESULTS + INDEXING IN VECTOR DB
// ====================================================================
// collect + index documentation by crawling a website's docs
await knowledge.collect.crawl({
url: 'https://docs.railway.app/',
vectorize: true,
index: {
local: true,
// postgres : false, // remote index not implemented yet
// weaviate : false, // remote index not implemented yet
},
});
// collect + index tutorials/articles/docs by googling a use case (needs serper key in .env)
await knowledge.collect.learn({
query: 'setup and deploy graphql with node',
vectorize: true,
index: { local: true },
});;
// collect + index readmes from a github (needs github key in .env)
await knowledge.collect.github({
url: 'https://github.com/resend/react-email',
vectorize: true,
index: { local: true },
});
// collect + index readmes from a npm , by crawling its assigned github repo (needs github key in .env)
await knowledge.collect.npm({
name: 'react-confetti',
vectorize: true,
index: { local: true },
});
// collect + index every {method,route} combination from an openapi specifications file url (can be yaml or json)
await knowledge.collect.openapi({
url: 'https://raw.githubusercontent.com/resend/resend-openapi/refs/heads/main/resend.yaml',
vectorize: true,
index: { local: true },
});
// ====================================================================
// QUERYING THE COLLECTED DATA
// ====================================================================
// search example
const retrieved = await knowledge.index.query.local({
query: "create graphql schemas for invoices",
amount: 4
})
/*
-> retrieved :
[
{
uid,
data: {
meta: {...}
content: "... documentation content ..."
},
},
...
]
*/
// RAG example
const answer = await knowledge.index.ask.local({
query: `make a new nodejs project that :
> makes a local vectra index
> indexes from a csv list of my clients , which is 'name,email,phone,task_description'
> write test cases ;
no typescript, and use type : module
answer with the new , entire project codebase , with every file needed (including any example), in format :
\`\`\`yaml
repo:
- path: "" # full file path
content: "" # full file content
- ...
\`\`\``,
model: `o1-mini`
})
console.dir({answer})
Potential Issues
- if using the local index features (and that depend on
@electric-sql/pglite
and@electric-sql/pglite/pgvector
) in a cloud dockerized environment, might run into some issues. the npm installer for pgvector does not handle the full installation by default - although, should work without problem in local / browsers envs
WIP
- post processing retrieved documents (clean up and reformat with LLM)
- indexing in remote vector database (supabase , weaviate)