@okfde/filingcabinet
v0.0.4
Published
A Django app that manages documents with pages, page annotations and collections. [Optionally can use document feature annotation and prediction.](https://github.com/okfde/fcdocs-annotate)
Downloads
8
Readme
django-filingcabinet
A Django app that manages documents with pages, page annotations and collections. Optionally can use document feature annotation and prediction.
Quickstart with Docker
Install docker and docker compose plugin.
# Copy example environment and set a secret key
cp .env.example .env
# Create database file to mount into container
touch db.sqlite3
docker-compose run --rm web python manage.py migrate
# Create a user account
docker-compose run --rm web python manage.py createsuperuser
# Start all services (nginx, web, worker, broker)
docker-compose up
# Nginx will be available at localhost:8080 by default
Example User flow
Access the admin interface at: http://localhost:8080/admin/
Set the correct site domain at: http://localhost:8080/admin/sites/site/
Upload documents at: http://localhost:8080/admin/filingcabinet/document/
Integrate into a Django project
See the src/fc_project
dir for an example of a Django project that uses django-filingcabinet
and the feature prediction in fcdocs-annotate
.
Management command to import directory of PDFs
python manage.py import_documents <directory of *.pdf files>
You can provide extra metadata as a JSON file with the same name as the PDF file. E.g.:
{
"title": "",
"description": "",
"language": "<ISO language code>",
"published_at": "<ISO date string>",
"public": true,
"listed": true,
"properties": {
"custom": "properties"
},
"data": {
"filterable": "data"
},
"tags": ["Tag"],
"collection": 123
}
Manual feature annotation
You can generate training data by annotating documents in your database. Create features in the admin and then visit:
http://localhost:8080/documents/features/
Feature prediction on documents
Use a ZIP-export of a kedro feature model: https://github.com/okfde/fcdocs#packaging-the-models
Upload a packaged feature model as .zip: http://localhost:8080/admin/fcdocs_annotation/feature/
Start feature prediction tasks on documents via document admin action dropdown.
Prediction microservice
You can use the prediction API stand-alone as a microservice. Send JSON with a document URL and a callback URL to a feature prediction API endpoint:
curl --request POST \
--url http://localhost:8080/api/feature/1/predict/ \
--header 'Content-Type: application/json' \
--data '{"document_url": "http://example.com/document.pdf",
"callback_url": "http://example.com/callback/"}'
This will return a JSON document like this:
{
"callback_url": "http://example.com/callback/",
"document_url": "http://example.com/document.pdf",
"feature_id": 1,
"task_id": "93e84b09-78ca-4c27-97ce-90b23d13fae5",
"result": null,
"status": "pending",
"details": ""
}
The callback URL will be POSTed a JSON document like this:
{
"callback_url": "http://example.com/callback/",
"document_url": "http://example.com/document.pdf",
"feature_id": 1,
"task_id": "93e84b09-78ca-4c27-97ce-90b23d13fae5",
"result": false,
"status": "complete",
"details": ""
}
Tests
In this project we use pytest and playwright to test the application. To install all dependencies for the tests, use:
python3 -m venv fc-env
source fc-env/bin/activate
pip install -e ".[test]"
playwright install --with-deps chromium
yarn install
yarn run build
To run the tests, use:
pytest
or to run the tests and see the end-to-end tests running in the browser, use:
pytest --headed