npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

@neurodevs/fili.js

v2.0.4

Published

[![npm version](https://badge.fury.io/js/fili.svg)](http://badge.fury.io/js/fili) [![Build Status](https://travis-ci.org/markert/fili.js.svg?branch=master)](https://travis-ci.org/markert/fili.js)

Downloads

2

Readme

fili

npm version Build Status

A digital filter library for JavaScript.

Installation

$ npm install fili

Usage

Node
var Fili = require('fili');

var iirCalculator = new Fili.CalcCascades();
Browser
  1. Copy ./dist/fili.min.js into your working directory

  2. Load script in your index.html

<script src="js/fili.min.js"></script>
  1. Use Fili in your application
var iirCalculator = new Fili.CalcCascades();
// ...

API

Generate IIR Filters with bilinear transform

IIR filters are composed of n Biquad filters. The Biquad filters need a and b coefficients to work. So, they have a backward and a forward path. Possible filters are:

  • lowpass

  • highpass

  • bandpass

  • bandstop

  • peak

  • lowshelf

  • highshelf

  • aweighting

Possible characteristics are:

  • bessel

  • butterworth

Note: for peak, lowshelf and highshelf a gain attribute must be defined when generating the coefficients. Gain can be positive or negative and represents the dB value for the peak or dip.

//  Instance of a filter coefficient calculator
var iirCalculator = new Fili.CalcCascades();

// get available filters
var availableFilters = iirCalculator.available();

// calculate filter coefficients
var iirFilterCoeffs = iirCalculator.lowpass({
    order: 3, // cascade 3 biquad filters (max: 12)
    characteristic: 'butterworth',
    Fs: 1000, // sampling frequency
    Fc: 100, // cutoff frequency / center frequency for bandpass, bandstop, peak
    BW: 1, // bandwidth only for bandstop and bandpass filters - optional
    gain: 0, // gain for peak, lowshelf and highshelf
    preGain: false // adds one constant multiplication for highpass and lowpass
    // k = (1 + cos(omega)) * 0.5 / k = 1 with preGain == false
  });

// create a filter instance from the calculated coeffs
var iirFilter = new Fili.IirFilter(iirFilterCoeffs);

Generate IIR Filters with matched-z transform

IIR filters are composed of n Biquad filters. The Biquad filters need only a coefficients to work. So, they have a backward but no forward path. Possible filters are:

  • lowpass

Possible characteristics are:

  • bessel

  • butterworth

  • allpass

  • tschebyscheff05

  • tschebyscheff1

  • tschebyscheff2

  • tschebyscheff3

Note: The number behind tschebyscheff defines the passband ripple.

// calculate filter coefficients
var iirFilterCoeffs = iirCalculator.lowpass({
    order: 3, // cascade 3 biquad filters (max: 5)
    characteristic: 'tschebyscheff3',
    transform: 'matchedZ',
    Fs: 1000, // sampling frequency
    Fc: 100, // cutoff frequency / center frequency for bandpass, bandstop, peak
    preGain: false // uses k when true for gain correction b[0] otherwise
  });

Generate FIR Filters

FIR filter calculation is done with a windowed sinc function Possible filters are:

  • lowpass
  • highpass
  • bandpass
  • bandstop
//  Instance of a filter coefficient calculator
var firCalculator = new Fili.FirCoeffs();

// calculate filter coefficients
var firFilterCoeffs = firCalculator.lowpass({
    order: 100, // filter order
    Fs: 1000, // sampling frequency
    Fc: 100 // cutoff frequency
    // forbandpass and bandstop F1 and F2 must be provided instead of Fc
  });

// filter coefficients by Kaiser-Bessel window
var firFilterCoeffsK = firCalculator.kbFilter({
    order: 101, // filter order (must be odd)
    Fs: 1000, // sampling frequency
    Fa: 50, // rise, 0 for lowpass
    Fb: 100, // fall, Fs/2 for highpass
    Att: 100 // attenuation in dB
  });

// create a filter instance from the calculated coeffs
var firFilter = new Fili.FirFilter(firFilterCoeffs);

Run Filter

// run the filter with 10 samples from a ramp
// returns single value
for (var cnt = 0; cnt < 10; cnt++) {
  console.log(filter.singleStep(cnt));
}

// run the filter from input array
// returns array
console.log(filter.multiStep([1,10,-5,3,1.112,17]));

// simulate the filter
// does not change the internal state
// returns array
console.log(filter.simulate([-3,-2,-1,5,6,33]));

Evaluate Filter

// get the filter impact on magnitude, phase, unwrapped phase, phase delay and group delay
// returns array of n objects
// Fs = 1000 n = 100, so the array represents 0Hz, 10Hz, 20Hz....
// returns array of objects
// {dBmagnitude: -4, groupDelay: 2, magnitude: 0, phase: -7, phaseDelay: 12, unwrappedPhase: 7}
var response = filter.response(100);

// get the filter impact on magnitude, phase, unwrapped phase, phase delay and group delay
// for a defined frequency
// returns one object
var responsePoint = filter.responsePoint({
    Fs: 1000,  // sampling frequency
    Fr: 123 // frequency of interest
  });

Evaluate stability


// initialize filter for testing
// note: changes internal state of filter -> create a new filter from
// the calculated coefficients for evaluation
var filterTester = new Fili.FilterTester(testFilter);

// check if filter is stable for the specified input range
// returns true for stable filter
var stable = filterTester.directedRandomStability({
    steps: 10000, // filter steps per test
    tests: 100, // numbers of tests (random, ramp, impulses, steps)
    offset: 5, // offset of input
    pp: 10, // peak to peak of input
    maxStable: 20, // values over this border will be considered as unstable
    minStable: -10, // values under this border will be considered as unstable
    setup: 1000 // steps until initial setup of filter is complete
  });

Calculate FFT

An FFT is always useful to evaluate filter responses. The algorithm uses precalculated twiddle factors and a lookup table for sine and cosine values. It also reuses all calculation buffers and precalculated window functions. This minimizes garbage collection and improves calculation speed.

Generate a new FFT calculator:

// Fft radix must be 2^n
var fft = new Fili.Fft(8192);

Frequency<--->Time Domain:

var buffer = [];
for (var cnt = 0; cnt < 8192; cnt++) {
  buffer.push(cnt);
}

// Supported window functions are
// none, hanning, hamming, rectangular
// tukery, cosine, lanczos,
// triangular, bartlett, gaussian,
// bartlettHanning, blackman, blackmanHarris,
// nuttall3, nuttall3a, nuttall3b,
// nuttall4, nuttall4a, nuttall4b, nuttall4c
// sft3f, sft4f, sft5f, sft3m, sft4m, sft5m
// nift, hpft, srft, hft70, hft95, hft90d
// hft116d, hft144d, hft196d, hft223d, hft248d

// get available window functions
var availableWindows = fft.windows();

// buffer.length must be greater or equal fft radix
var fftResult = fft.forward(buffer, 'hanning');

// fftResult = {re: [], im: []}. The array length equals the FFT radix

var magnitude = fft.magnitude(fftResult); // magnitude
var dB = fft.magToDb(magnitude); // magnitude in dB
var phase = fft.phase(fftResult); // phase

// Note: magnitude, dB and phase are arrays.
// The length equals the FFT radix.
// For exact phase evaluation, the phase must be unwrapped.

var originalBuffer = fft.inverse(fftResult.re, fftResult.im);

Test

$ make test

TODO

  • add travis
  • add wavelet transform
  • add Parks-McClellan FIR algorithm
  • add iir filters other than biquad
  • add stability evaluation for fix-point arithmetic

License

MIT