npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

@nathrach/early-birds

v1.0.3

Published

combinator birds for javascript

Downloads

8

Readme

early-birds

early-birds, like fantasy-birds, is a port of the haskell package Data.Aviary.Birds.

Install

npm i @nathrach/early-birds

Differences between early-birds and fantasy-birds

For many combinators, the behaviour of early-birds will (modulo bugs) be identical to that of fantasy-birds. early-birds differs in that intermediate results are eagerly evaluated, e.g. for the idstarstar bird, (a -> b -> c) -> a -> b -> c, idstarstar(f)(x) will evalute f(x) as soon as x is provided. The intermediate results are also "closed over" so that the evaluation occurs only once.

Consider the following example module which demonstrates the differences.

import { psi } from "../src/early-birds.mjs"
const F = require ("fantasy-birds")

const psiEarly = psi

const psiFantasy = F.psi

const toLower = string => (
  console.log (`!---- evaluating "${string}".toLowerCase() ----!`),
  string.toLowerCase()
)

const equal3 = x => y => x === y

const tests = [ 'true', 'True', 'TruE', 'false', 'False', 'FalsE' ]

// --- Using early-birds
console.log ('\n !#### Testing with psiEarly ####!\n')

const isTrueEarly = psiEarly (equal3) (toLower) ('TRUE')

tests.map (e => console.log (`Testing isTrueEarly ("${e}"): ${isTrueEarly (e)}\n`))

// --- Using fantasy-birds
console.log ('\n!#### Testing with psiFantasy ####!\n')

const isTrueFantasy = psiFantasy (equal3) (toLower) ('TRUE')

tests.map (e => console.log (`Testing isTrue ("${e}"): ${isTrueFantasy (e)}\n`))

When this module is imported into node.js the following is output:

> await import ('./examples/sameLetters.mjs')

 !#### Testing with psiEarly ####!

!---- evaluating "TRUE".toLowerCase() ----!
!---- evaluating "true".toLowerCase() ----!
Testing isTrueEarly ("true"): true

!---- evaluating "True".toLowerCase() ----!
Testing isTrueEarly ("True"): true

!---- evaluating "TruE".toLowerCase() ----!
Testing isTrueEarly ("TruE"): true

!---- evaluating "false".toLowerCase() ----!
Testing isTrueEarly ("false"): false

!---- evaluating "False".toLowerCase() ----!
Testing isTrueEarly ("False"): false

!---- evaluating "FalsE".toLowerCase() ----!
Testing isTrueEarly ("FalsE"): false

!#### Testing with psiFantasy ####!

!---- evaluating "TRUE".toLowerCase() ----!
!---- evaluating "true".toLowerCase() ----!
Testing isTrue ("true"): true

!---- evaluating "TRUE".toLowerCase() ----!
!---- evaluating "True".toLowerCase() ----!
Testing isTrue ("True"): true

!---- evaluating "TRUE".toLowerCase() ----!
!---- evaluating "TruE".toLowerCase() ----!
Testing isTrue ("TruE"): true

!---- evaluating "TRUE".toLowerCase() ----!
!---- evaluating "false".toLowerCase() ----!
Testing isTrue ("false"): false

!---- evaluating "TRUE".toLowerCase() ----!
!---- evaluating "False".toLowerCase() ----!
Testing isTrue ("False"): false

!---- evaluating "TRUE".toLowerCase() ----!
!---- evaluating "FalsE".toLowerCase() ----!
Testing isTrue ("FalsE"): false

[Module: null prototype] {  }
> 

In the example, "TRUE".toLowerCase is evaluted only once for the early-birds psi and is evaluted for each test for the fantasy-birds psi. The eager closure can be useful when applying the combinators to pure functions since the evaluation will always be the same. However, for applications that rely on the side effects, the fantasy-birds behaviour is likely what is desired.

The Aviary

applicator :: (a -⁠> b) -⁠> a -⁠> b

  • I* combinator
  • λ abstraction: λab.ab

becard :: (c -⁠> d) -⁠> (b -⁠> c) -⁠> (a -⁠> b) -⁠> a -⁠> d

  • B3 combinator
  • λ abstraction: λabcd.a(b(cd))

blackbird :: (c -⁠> d) -⁠> (a -⁠> b -⁠> c) -⁠> a -⁠> b -⁠> d

  • B1 combinator
  • λ abstraction: λabcd.a(bcd)

bluebird :: (b -⁠> c) -⁠> (a -⁠> b) -⁠> a -⁠> c

  • B combinator
  • λ abstraction: λabc.a(bc)

bluebird_ :: (a -⁠> c -⁠> d) -⁠> a -⁠> (b -⁠> c) -⁠> b -⁠> d

  • B' combinator
  • λ abstraction: λabcd.ab(cd)

bunting :: (d -⁠> e) -⁠> (a -⁠> b -⁠> c -⁠> d) -⁠> a -⁠> b -⁠> c -⁠> e

  • B2 combinator
  • λ abstraction: λabcde.a(bcde)

cardinal :: (a -⁠> b -⁠> c) -⁠> b -⁠> a -⁠> c

  • C combinator
  • λ abstraction: λabc.acb

cardinal_ :: (c -⁠> a -⁠> d) -⁠> (b -⁠> c) -⁠> a -⁠> b -⁠> d

  • C' combinator
  • λ abstraction: λabcd.a(bd)c

cardinalstar :: (a -⁠> c -⁠> b -⁠> d) -⁠> a -⁠> b -⁠> c -⁠> d

  • C* combinator
  • λ abstraction: λabcd.abdc

cardinalstarstar :: (a -⁠> b -⁠> d -⁠> c -⁠> e) -⁠> a -⁠> b -⁠> c -⁠> d -⁠> e

  • C** combinator
  • λ abstraction: λabcde.abced

dickcissel :: (a -⁠> b -⁠> d -⁠> e) -⁠> a -⁠> b -⁠> (c -⁠> d) -⁠> c -⁠> e

  • D1 combinator
  • λ abstraction: λabcde.abc(de)

dove :: (a -⁠> c -⁠> d) -⁠> a -⁠> (b -⁠> c) -⁠> b -⁠> d

  • D combinator
  • λ abstraction: λabcd.ab(cd)

dovekie :: (c -⁠> d -⁠> e) -⁠> (a -⁠> c) -⁠> a -⁠> (b -⁠> d) -⁠> b -⁠> e

  • D2 combinator
  • λ abstraction: λabcde.a(bc)(de)

eagle :: (a -⁠> d -⁠> e) -⁠> a -⁠> (b -⁠> c -⁠> d) -⁠> b -⁠> c -⁠> e

  • E combinator
  • λ abstraction: λabcde.ab(cde)

eaglebald :: (e -⁠> f -⁠> g) -⁠> (a -⁠> b -⁠> e) -⁠> a -⁠> b -⁠> (c -⁠> d -⁠> f) -⁠> c -⁠> d -⁠> g

  • E^ combinator
  • λ abstraction: λabcdefg.a(bcd)(efg)

finch :: a -⁠> b -⁠> (b -⁠> a -⁠> c) -⁠> c

  • F combinator
  • λ abstraction: λabc.cba

finchstar :: (c -⁠> b -⁠> a -⁠> d) -⁠> a -⁠> b -⁠> c -⁠> d

  • F* combinator
  • λ abstraction: λabcd.adcb

finchstarstar :: (a -⁠> d -⁠> c -⁠> b -⁠> e) -⁠> a -⁠> b -⁠> c -⁠> d -⁠> e

  • F** combinator
  • λ abstraction: λabcde.abedc

goldfinch :: (b -⁠> c -⁠> d) -⁠> (a -⁠> c) -⁠> a -⁠> b -⁠> d

  • G combinator
  • λ abstraction: λabcd.ad(bc)

hummingbird :: (a -⁠> b -⁠> a -⁠> c) -⁠> a -⁠> b -⁠> c

  • H combinator
  • λ abstraction: λabc.abcb

idiot :: a -⁠> a

  • I combinator
  • λ abstraction: λa.a

idstar :: (a -⁠> b) -⁠> a -⁠> b

  • I* combinator
  • λ abstraction: λab.ab

idstarstar :: (a -⁠> b -⁠> c) -⁠> a -⁠> b -⁠> c

  • I** combinator
  • λ abstraction: λabc.abc

jalt :: (a -⁠> c) -⁠> a -⁠> b -⁠> c

  • jalt combinator
  • λ abstraction: λabc.ab

jalt_ :: (a -⁠> b -⁠> d) -⁠> a -⁠> b -⁠> c -⁠> d

  • jalt' combinator
  • λ abstraction: λabcd.abc

jay :: (a -⁠> b -⁠> b) -⁠> a -⁠> b -⁠> a -⁠> b

  • J combinator
  • λ abstraction: λabcd.ab(adc)

kestrel :: a -⁠> b -⁠> a

  • K combinator
  • λ abstraction: λab.a

kite :: a -⁠> b -⁠> b

  • Ki combinator
  • λ abstraction: λab.b

owl :: ((a -⁠> b) -⁠> a) -⁠> (a -⁠> b) -⁠> b

  • O combinator
  • λ abstraction: λab.b(ab)

phoenix :: (b -⁠> c -⁠> d) -⁠> (a -⁠> b) -⁠> (a -⁠> c) -⁠> a -⁠> d

  • S' combinator

  • λ abstraction: λabcd.a(bd)(cd)

  • same as starling_

psi :: (b -⁠> b -⁠> c) -⁠> (a -⁠> b) -⁠> a -⁠> a -⁠> c

  • Psi combinator
  • λ abstraction: λabcd.a(bc)(bd)

quacky :: a -⁠> (a -⁠> b) -⁠> (b -⁠> c) -⁠> c

  • Q4 combinator
  • λ abstraction: λabc.c(ba)

queer :: (a -⁠> b) -⁠> (b -⁠> c) -⁠> a -⁠> c

  • Q combinator
  • λ abstraction: λabc.b(ac)

quirky :: (a -⁠> b) -⁠> a -⁠> (b -⁠> c) -⁠> c

  • Q3 combinator
  • λ abstraction: λabc.c(ab)

quixotic :: (b -⁠> c) -⁠> a -⁠> (a -⁠> b) -⁠> c

  • Q1 combinator
  • λ abstraction: λabc.a(cb)

quizzical :: a -⁠> (b -⁠> c) -⁠> (a -⁠> b) -⁠> c

  • Q2 combinator
  • λ abstraction: λabc.b(ca)

robin :: a -⁠> (b -⁠> a -⁠> c) -⁠> b -⁠> c

  • R combinator
  • λ abstraction: λabc.bca

robinstar :: (b -⁠> c -⁠> a -⁠> d) -⁠> a -⁠> b -⁠> c -⁠> d

  • R* combinator
  • λ abstraction: λabcd.acdb

robinstarstar :: (a -⁠> c -⁠> d -⁠> b -⁠> e) -⁠> a -⁠> b -⁠> c -⁠> d -⁠> e

  • R** combinator
  • λ abstraction: λabcde.abdec

starling :: (a -⁠> b -⁠> c) -⁠> (a -⁠> b) -⁠> a -⁠> c

  • S combinator
  • λ abstraction: λabc.ac(bc)

starling_ :: (b -⁠> c -⁠> d) -⁠> (a -⁠> b) -⁠> (a -⁠> c) -⁠> a -⁠> d

  • S' combinator

  • λ abstraction: λabcd.a(bd)(cd)

  • same as phoenix

thrush :: a -⁠> (a -⁠> b) -⁠> b

  • T combinator
  • λ abstraction: λab.ba

vireo :: a -⁠> b -⁠> (a -⁠> b -⁠> c) -⁠> c

  • V combinator
  • λ abstraction: λabc.cab

vireostar :: (b -⁠> a -⁠> b -⁠> d) -⁠> a -⁠> b -⁠> b -⁠> d

  • V* combinator
  • λ abstraction: λabcd.acbd

vireostarstar :: (a -⁠> c -⁠> b -⁠> c -⁠> e) -⁠> a -⁠> b -⁠> c -⁠> c -⁠> e

  • V** combinator
  • λ abstraction: λabcde.abecd

warbler :: (a -⁠> a -⁠> b) -⁠> a -⁠> b

  • W combinator
  • λ abstraction: λab.abb

warbler1 :: a -⁠> (a -⁠> a -⁠> b) -⁠> b

  • W1 combinator
  • λ abstraction: λab.baa

warblerstar :: (a -⁠> b -⁠> b -⁠> c) -⁠> a -⁠> b -⁠> c

  • W* combinator
  • λ abstraction: λabc.abcc

warblerstarstar :: (a -⁠> b -⁠> c -⁠> c -⁠> d) -⁠> a -⁠> b -⁠> c -⁠> d

  • W** combinator
  • λ abstraction: λabcd.abcdd