@mrbatista/excel-as-json
v2.2.2
Published
Convert Excel data to JSON
Downloads
12
Maintainers
Readme
Convert Excel Files to JSON
What
Parse Excel xlsx files into a list of javascript objects and optionally write that list as a JSON encoded file.
You may organize Excel data by columns or rows where the first column or row contains object key names and the remaining columns/rows contain object values.
Expected use is offline translation of Excel data to JSON files, although all methods are exported for other uses.
Install
$ npm install mrbatista/excel-as-json --save-dev
Use
convertExcel = require('excel-as-json').processFile;
convertExcel(src, dst, options, callback);
src: path to source Excel file (xlsx only) - will read sheet 1
dst: path to destination JSON file. If null, simply return the parsed object tree
options: the options object
- isColumnsOriented: is an Excel row an object, or is a column an object (Default: false)
- omitEmptyFields: omit empty Excel fields from JSON output - default false
- oneFilePerColumn: Create new file per each column (Default: false),
- filenameFromField: If
oneFilePerColumn
is enabled specify the field to identify the name of file - sheets: Specific the index of sheet to read. See example for more complex configuration:
// specific only sheet; default to 1; options = {sheets: 2} // specific sheets and custom name options = {sheets: [{index: 2, name: test.json}] // complex options object with multiple sheets. Sheet options override global options options = { isColumnsOriented: false, skipRows: 1, skipColumns: 1 sheets: [ {index: 1, subfolder: '/test/', name: 'it.json'}, {index: 2, subfolder: '/test/', name: 'en.json', skipRows: 1, skipColumns: 1}, {index: 3, subfolder: '/splitted/', isColumnsOriented: true, oneFilePerColumn: true, filenameFromField: 'key'} ] }
callback(err, data): callback for completion notification
With these arguments, you can:
- convertExcel(src, dst) will write a row oriented xlsx to file with no notification
- convertExcel(src, dst, options) will write a col oriented xlsx to file with no notification
- convertExcel(src, dst, options, callback) will write a col oriented xlsx to file and notify with errors and data
- convertExcel(src, null, options, callback) will return errors and the parsed object tree in the callback
Convert a row/col oriented Excel file to JSON as a development task and log errors:
convertExcel = require('excel-as-json').processFile
options =
sheets: '1'
isColumnsOriented: false
omitEmtpyFields: false
convertExcel 'row.xlsx', 'row.json', options, (err, data) ->
if err then console.log "JSON conversion failure: #{err}"
options =
sheets: 1
isColumnsOriented: true
omitEmtpyFields: false
convertExcel 'col.xlsx', 'col.json', options, (err, data) ->
if err then console.log "JSON conversion failure: #{err}"
Convert Excel file to an object tree and use that tree. Note that properly formatted data will convert to the same object tree whether row or column oriented.
convertExcel = require('excel-as-json').processFile
convertExcel 'row.xlsx', undefined, (err, data) ->
if err throw err
doSomethingInteresting data
convertExcel 'col.xlsx', undefined, {isColumnsOriented: true}, (err, data) ->
if err throw err
doSomethingInteresting data
Why?
- Your application serves static data obtained as Excel reports from another application
- Whoever manages your static data finds Excel more pleasant than editing JSON
- Your data is the result of calculations or formatting that is more simply done in Excel
What's the challenge?
Excel stores tabular data. Converting that to JSON using only a couple of assumptions is straight-forward. Most interesting JSON contains nested lists and objects. How do you map a flat data square that is easy for anyone to edit into these nested lists and objects?
Solving the challenge
- Use a key row to name JSON keys
- Allow data to be stored in row or column orientation.
- Use javascript notation for keys and arrays
- Allow dotted key path notation
- Allow arrays of objects and literals
Excel Data
What is the easiest way to organize and edit your Excel data? Lists of simple objects seem a natural fit for a row oriented sheets. Single objects with more complex structure seem more naturally presented as column oriented sheets. Doesn't really matter which orientation you use, the module allows you to speciy a row or column orientation; basically, where your keys are located: row 0 or column 0.
Keys and values:
- Row or column 0 contains JSON key paths
- Remaining rows/columns contain values for those keys
- Multiple value rows/columns represent multiple objects stored as a list
- Within an object, lists of objects have keys like phones[1].type
- Within an object, flat lists have keys like aliases[]
Examples
A simple, row oriented key
|firstName |--------- | Jihad
produces
[{
"firstName": "Jihad"
}]
A dotted key name looks like
| address.street |--- | 12 Beaver Court
and produces
[{
"address": {
"street": "12 Beaver Court"
}
}]
An indexed array key name looks like
|phones[0].number |--- |123.456.7890
and produces
[{
"phones": [{
"number": "123.456.7890"
}]
}]
An embedded array key name looks like this and has ';' delimited values
| aliases[] |--- | stormagedden;bob
and produces
[{
"aliases": [
"stormagedden",
"bob"
]
}]
A more complete row oriented example
|firstName| lastName | address.street | address.city|address.state|address.zip | |---------|----------|-----------------|-------------|-------------|------------| | Jihad | Saladin | 12 Beaver Court | Snowmass | CO | 81615 | | Marcus | Rivapoli | 16 Vail Rd | Vail | CO | 81657 |
would produce
[{
"firstName": "Jihad",
"lastName": "Saladin",
"address": {
"street": "12 Beaver Court",
"city": "Snowmass",
"state": "CO",
"zip": "81615"
}
},
{
"firstName": "Marcus",
"lastName": "Rivapoli",
"address": {
"street": "16 Vail Rd",
"city": "Vail",
"state": "CO",
"zip": "81657"
}
}]
You can do something similar in column oriented sheets. Note that indexed and flat arrays are added.
|firstName | Jihad | Marcus | | :--- | :--- | :--- | |lastName | Saladin | Rivapoli | |address.street |12 Beaver Court | 16 Vail Rd |address.city | Snowmass | Vail |address.state | CO | CO |address.zip| 81615 | 81657 |phones[0].type| home | home |phones[0].number |123.456.7890 | 123.456.7891 |phones[1].type| work | work |phones[1].number | 098.765.4321 | 098.765.4322 |aliases[] | stormagedden;bob | mac;markie
would produce
[
{
"firstName": "Jihad",
"lastName": "Saladin",
"address": {
"street": "12 Beaver Court",
"city": "Snowmass",
"state": "CO",
"zip": "81615"
},
"phones": [
{
"type": "home",
"number": "123.456.7890"
},
{
"type": "work",
"number": "098.765.4321"
}
],
"aliases": [
"stormagedden",
"bob"
]
},
{
"firstName": "Marcus",
"lastName": "Rivapoli",
"address": {
"street": "16 Vail Rd",
"city": "Vail",
"state": "CO",
"zip": "81657"
},
"phones": [
{
"type": "home",
"number": "123.456.7891"
},
{
"type": "work",
"number": "098.765.4322"
}
],
"aliases": [
"mac",
"markie"
]
}
]
Data Conversions
All values from the 'excel' package are returned as text. This module detects numbers and booleans and converts them to javascript types. Booleans must be text 'true' or 'false'. Excel FALSE and TRUE are provided from 'excel' as 0 and 1 - just too confusing.
Caveats
During install (mac), you may see compiler warnings while installing the excel dependency - although questionable, they appear to be benign.
TODO
- provide processSync - using 'async' module
- Detect and convert dates
- Make 1 column values a single object?
Change History
2.0.0
- Breaking changes to most function signatures
- Replace single option
isColOriented
with an options object to try to stabilize the processFile signature allowing future non-breaking feature additions. - Add
sheets
option to specify a 1-based index into the Excel sheet collection - all of your data in a single Excel workbook. - Add
omitEmptyFields
option that removes an object key-value if the corresponding Excel cell is empty. - Add
oneFilePerColumn
to create new file per each column, - Add
filenameFromField
ifoneFilePerColumn
is enabled specify the field to identify the name of file to write
1.0.0
- Changed process() to processFile() to avoid name collision with node's process object
- Automatically convert text numbers and booleans to native values
- Create destination directory if it does not exist