npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

@mqict/adonis-model

v1.0.2

Published

MQ-Models is a set of base models for MQ's Team server. MQ-Models runs on **Adonisjs 4**, **lucid-mongo**. It rewrites the relational definitions in models and functions to extend and query the mongoDB more easily. Lucid mongo: https://github.com/duyluong

Downloads

2

Readme

Welcome to MQ Adonisjs Model!

MQ-Models is a set of base models for MQ's Team server. MQ-Models runs on Adonisjs 4, lucid-mongo. It rewrites the relational definitions in models and functions to extend and query the mongoDB more easily. Lucid mongo: https://github.com/duyluonglc/lucid-mongo

Install

npm install @mqict/adonis-model

in Models file: use use('@mqict/adonis-model') as BaseModel.

	const Model =  use('@mqict/adonis-model')
    class  User  extends  Model {
    	.....
    }

in start/app.js add command:

...
/*
|--------------------------------------------------------------------------
| Commands
|--------------------------------------------------------------------------
|
| Here you store ace commands for your package
|
*/
const commands = [
  '@mqict/adonis-model/Commands/commands.js'
]
....

Using

Relations

This package support relations like lucid-mongo:

  • belongsTo
  • belongsToMany
  • hasMany
  • hasManyThrough
  • hasOne
  • morphMany
  • morphTo
  • morphOne
  • embedsOne
  • embedsMany
  • referMany

Addition relations

Use relationships to declare relationships, which are structured as:

    static get relationships() {
	    return {
		    <relationName1>:{
			    <relatedName1>: [<Model Related 1>, <localField>, <ForeginField>],
			    <relatedName2>: [<Model Related 2>, <localField>, <ForeginField>],
		    },
		    <relationName2>:{
			    <relatedName3>: [<Model Related 3>, <localField>, <ForeginField>],
			    <relatedName4>: [<Model Related 4>, <localField>, <ForeginField>, <custom params (optional)>],
		    },
	    }
    }

Relations between tables will be created automatically, but in the case of too complex data, it is necessary to declare custom params to create data constraints. Example:

    const Model =  use('@mqict/adonis-model')
    class  User  extends  Model {
	    static  get relationships() {
		    return {
				hasMany: {
					tokens: ['App/Models/Token', '_id', 'userId']
				},
				referMany: {
					roles: ['App/Models/Role', '_id', 'roleIds'],
					permissions: ['App/Models/Permission', '_id', 'permissionIds', {
            $lookup: {
              from: 'permissions',
              let : {
                localField: `$roles.permisstions`
              },
              pipeline: [
                {$match:{
                  $expr: {$in: ["$_id", "$$localField"]}
                }}
              ],
              as: 'permissions'
            }
            }]},
				}
			}
		}
		.....
	}

Schema

Schema is the structure of the database. It is used to query more easily. The library automatically generates schemas or you can create them manually. Automatic creation using command:

adonis mqmodel schema: create

To be able to create automatically, you need to create all the tables and insert into each table at least one record template.

Handmade: Create the folder app / Models / Schemas / In this folder, create the files corresponding to each model. Its format is json. "Field Name": "Data type" For example: User.json

{
    "_id": "objectid",
    "account": "string",
    "name": "string",
    "password": "string",
    "roleIds": "array",
    "permissionIds": "array",
    "created_at": "moment",
    "updated_at": "moment",
    "roles": "function",
    "permissions": "function",
    "tokens": "function"
}

Acceptable data types: string number array object moment objectid string

Query

Same as Lucid-mongo & mquery:

        const users =  await User.all()
        const users =  await User.where('name', 'peter').fetch()
        const users =  await User.where({ name: 'peter' })
      .limit(10).skip(20).fetch()
    
	    const users =  await User.where({
		  $or: [
	        { gender: 'female', age: { $gte: 20 } }, 
	        { gender: 'male', age: { $gte: 22 } }
	      ]
	    }).fetch()
    
	    const user =  await User
	      .where('name').eq('peter')
	      .where('age').gt(18).lte(60)
	      .sort('-age')
	      .first()
    
	    const users =  await User
	      .where({ age: { $gte: 18 } })
	      .sort({ age: -1 })
	      .fetch()
    
	    const users =  await User
	      .where('age', '>=', 18)
	      .fetch()
	    
	    const users =  await User
	      .where('age').gt(18)
	      .paginate(2, 100)
	    
	    const users =  await User.where(function() {
	      this.where('age', '>=', 18)
	    }).fetch()
    
    // to query geo near you need add 2d or 2dsphere index in migration file
	    const images = await Image
	      .where(location)
	      .near({ center: [1, 1] })
	      .maxDistance(5000)
	      .fetch()
	    
	    const images = await Image
	      .where(location)
	      .near({ center: [1, 1], sphere: true })
	      .maxDistance(5000)
	      .fetch()
    
    [More Documentation of mquery](https://github.com/aheckmann/mquery)
    
    ### [](https://github.com/duyluonglc/lucid-mongo#aggregation)Aggregation
    
      // count without group by
      const count = await Customer.count()
    
      // count group by `position`
      const count_rows = await Customer
        .where({ invited: { $exist: true } })
        .count('position')
    
      // max age without group by
      const max = await Employee.max('age')
    
      // sum `salary` group by `department_id`
      const total_rows = await Employee
        .where(active, true)
        .sum('salary', 'department_id')
    
      // average group by `department_id` and `role_id`
      const avg_rows = await Employee
        .where(active, true)
        .avg('salary', { department: '$department_id', role: '$role_id' })

Aggregation

MQ-Models hỗ trợ aggregation. sử dụng fetchAggregate() hoặc aggregate([....])

Example:

    const users = await User.with('emails').fetchAggregate()
     const users = await User.with('emails').aggregate([
	     $match: {
		     username: /ngoc/i
	     },
	     $unwind: {
		     path: 'emails',
		     preserveNullAndEmptyArrays: true
	     }
	])
	//or
	const users = await User.with('emails').where({username: "ngoc"}).fetchAggregate()

More: https://docs.mongodb.com/manual/reference/operator/aggregation/unwind/

Auto unwind

By default, auto-unwind supports aggragation with dependencies: belongsTo, hasOne, embedsOne, morphOne. You can add more by overriding the autoUnwind function below:

    static  get autoUnwind(){
	    return [
		    "belongsTo",
		    "hasOne",
		    "embedsOne",
		    "morphOne"
		]
	}

lookup Recursive

Order.query.lookupRecursive({
          '_id': 1,
          'code': 1,
          'customer_name': 1,
          'type': 1,
          'status': 1,
          'OrderDetail': {
            _id: 1,
            quantity: 1,
            Product: {
              _id: 1,
              name: 1
            },
            $match: {
              quantity: {$gte: "4"}
            }
          },
          $match: {
            "OrderDetail._id" : {
              $exists: true
            }
          }
        }).fetchAggregate()

output:

{
    "_id": "5bdc15838270df06b49008f8",
    "code": "123456",
    "customer_name": "日本㈱",
    "type": "0",
    "status": "1",
    "customer_code": "12345",
    "OrderDetail": [
        {
            "_id": "5bdfa2c23829550b884a6679",
            "quantity": "5",
            "Product": {
                "_id": "5bd17ece0762192320a6d634",
                "name": "L金型",
            }
        },
        {
            "_id": "5bdfa2c23829550b884a6672",
            "quantity": "5",
            "Product": {
                "_id": "5bd17ece0762192320a6d634",
                "name": "L金型",
            }
        },
        {
            "_id": "5bdfa2c23829550b884a66fd",
            "quantity": "5",
            "Product": {
                "_id": "5bd17ece0762192320a6d634",
                "name": "L金型",
            }
        },
        {
            "_id": "5bdfa2c23829550b884a6612",
            "quantity": "5",
            "Product": {
                "_id": "5bd17ece0762192320a6d634",
                "name": "L金型",
            }
        }
    ]
}

NgocHip