@molaux/sequelize-graphql-schema-builder
v2.6.3
Published
Builds a complete GraphQL Schema for CRUD operations from a sequelize instance
Downloads
126
Readme
Sequelize GraphQL Schema Builder
This project is an experimental work that aims to build a complete GraphQL schema for CRUD operations, on top of graphql-sequelize.
The sequelizeGraphQLSchemaBuilder
builds queries, mutations, subscriptions and types needed to build a complete GraphQL API according to your Sequelize models and associations. Generated queries, mutations and subscriptions are able to resolve nested associations, so the GraphQL schema is tight to the Sequelize schema.
Installation
$ npm install --save @molaux/sequelize-graphql-schema-builder
sequelize-graphql-schema-builder
assumes you have graphql and sequelize installed.
Use
const { schemaBuilder } = require('@molaux/sequelize-graphql-schema-builder')
const schema = sequelize => {
const {
modelsTypes: sequelizeModelsTypes,
queries: sequelizeModelsQueries,
mutations: sequelizeModelsMutations,
subscriptions: sequelizeModelsSubscriptions
} = schemaBuilder(sequelize)
return new GraphQLSchema({
query: new GraphQLObjectType({
name: 'RootQueryType',
fields: () => sequelizeModelsTypes,
}),
subscription: new GraphQLObjectType({
name: 'RootSubscriptionType',
fields: () => sequelizeModelsSubscriptions
}),
mutation: new GraphQLObjectType({
name: 'RootMutationType',
fields: () => sequelizeModelsMutations
})
})
}
Example
This documentation is based on the Sequelize GraphQL Schema Builder example.
Queries
The query api will shape like this :
type RootQueryType {
...
Staffs(query: JSON): [Staff]
Stores(query: JSON): [Store]
...
}
query {
Staffs {
firstName
fullName
Store {
ManagerStaff {
firstName
}
Staffs {
firstName
}
}
ManagerStaffStores {
Staffs {
fullName
}
}
Address {
address
}
}
}
{
"data": {
"Staffs": [
{
"firstName": "Mike",
"fullName": "Mike HILLYER",
"Store": {
"ManagerStaff": {
"firstName": "Mike"
},
"Staffs": [
{
"firstName": "Mike"
}
]
},
"ManagerStaffStores": [
{
"Staffs": [
{
"fullName": "Mike HILLYER"
}
]
}
],
"Address": {
"address": "23 Workhaven Lane"
}
},
{
"firstName": "Jon",
"fullName": "Jon STEPHENS",
"Store": {
"ManagerStaff": {
"firstName": "Jon"
},
"Staffs": [
{
"firstName": "Jon"
}
]
},
"ManagerStaffStores": [
{
"Staffs": [
{
"fullName": "Jon STEPHENS"
}
]
}
],
"Address": {
"address": "1411 Lillydale Drive"
}
}
]
}
}
Note the nested associations : here Store
and Staff
are linked by 2 foreign keys.
In the example, Staff.firstName
has a getter that transforms raw data into upper case, and Staff.fullName
is a Sequelize
VIRTUAL
field.
The corresponding SQL query is composed of multiple joins, and only needed fields to respond to the GraphQL query are pulled (and those needed by JOINs and VIRTUAL fields)
SELECT
"Staff"."first_name" AS "firstName",
"Staff"."store_id" AS "storeId",
"Staff"."staff_id" AS "staffId",
"Staff"."address_id" AS "addressId",
"Staff"."last_name" AS "lastName",
"Store"."manager_staff_id" AS "Store.managerStaffId",
"Store"."store_id" AS "Store.storeId",
"Store->ManagerStaff"."staff_id" AS "Store.ManagerStaff.staffId",
"Store->ManagerStaff"."first_name" AS "Store.ManagerStaff.firstName",
"Store->Staffs"."staff_id" AS "Store.Staffs.staffId",
"Store->Staffs"."first_name" AS "Store.Staffs.firstName",
"ManagerStaffStores"."store_id" AS "ManagerStaffStores.storeId", "ManagerStaffStores->Staffs"."staff_id" AS "ManagerStaffStores.Staffs.staffId",
"ManagerStaffStores->Staffs"."first_name" AS "ManagerStaffStores.Staffs.firstName",
"ManagerStaffStores->Staffs"."last_name" AS "ManagerStaffStores.Staffs.lastName",
"Address"."address_id" AS "Address.addressId", "Address"."address" AS "Address.address"
FROM "staff" AS "Staff"
LEFT OUTER JOIN "store" AS "Store" ON "Staff"."store_id" = "Store"."store_id"
LEFT OUTER JOIN "staff" AS "Store->ManagerStaff" ON "Store"."manager_staff_id" = "Store->ManagerStaff"."staff_id"
LEFT OUTER JOIN "staff" AS "Store->Staffs" ON "Store"."store_id" = "Store->Staffs"."store_id"
LEFT OUTER JOIN "store" AS "ManagerStaffStores" ON "Staff"."staff_id" = "ManagerStaffStores"."manager_staff_id"
LEFT OUTER JOIN "staff" AS "ManagerStaffStores->Staffs" ON "ManagerStaffStores"."store_id" = "ManagerStaffStores->Staffs"."store_id"
LEFT OUTER JOIN "address" AS "Address" ON "Staff"."address_id" = "Address"."address_id"
ORDER BY "Staff"."staff_id" ASC
dissociate
The previous big join query can be splitted where you want with the optionnal argument dissociate
(default is false
) :
query {
Staffs {
firstName
fullName
Store(dissociate: true) {
ManagerStaff {
firstName
}
Staffs {
firstName
}
}
ManagerStaffStores {
Staffs {
fullName
}
}
Address {
address
}
}
}
The resolvers will split association trees so the resulting queries will look like this :
SELECT
"Staff"."first_name" AS "firstName",
"Staff"."staff_id" AS "staffId",
...
FROM "staff" AS "Staff"
LEFT OUTER JOIN "store" AS "ManagerStaffStores" ON "Staff"."staff_id" = "ManagerStaffStores"."manager_staff_id"
LEFT OUTER JOIN "staff" AS "ManagerStaffStores->Staffs" ON "ManagerStaffStores"."store_id" = "ManagerStaffStores->Staffs"."store_id"
LEFT OUTER JOIN "address" AS "Address" ON "Staff"."address_id" = "Address"."address_id"
ORDER BY "Staff"."staff_id" ASC;
SELECT
"Store"."manager_staff_id" AS "managerStaffId",
"Store"."store_id" AS "storeId",
"ManagerStaff"."staff_id" AS "ManagerStaff.staffId", "ManagerStaff"."first_name" AS "ManagerStaff.firstName", "Staffs"."staff_id" AS "Staffs.staffId", "Staffs"."first_name" AS "Staffs.firstName"
FROM "store" AS "Store"
LEFT OUTER JOIN "staff" AS "ManagerStaff" ON "Store"."manager_staff_id" = "ManagerStaff"."staff_id"
LEFT OUTER JOIN "staff" AS "Staffs" ON "Store"."store_id" = "Staffs"."store_id"
WHERE "Store"."store_id" = 1;
SELECT
"Store"."manager_staff_id" AS "managerStaffId",
"Store"."store_id" AS "storeId",
"ManagerStaff"."staff_id" AS "ManagerStaff.staffId", "ManagerStaff"."first_name" AS "ManagerStaff.firstName", "Staffs"."staff_id" AS "Staffs.staffId", "Staffs"."first_name" AS "Staffs.firstName"
FROM "store" AS "Store"
LEFT OUTER JOIN "staff" AS "ManagerStaff" ON "Store"."manager_staff_id" = "ManagerStaff"."staff_id"
LEFT OUTER JOIN "staff" AS "Staffs" ON "Store"."store_id" = "Staffs"."store_id"
WHERE "Store"."store_id" = 2;
The 2 Staff
instances resulting from the first request resolve their Store
seperatly.
For each model, a corresponding type is created :
type Film {
filmId: ID!
title: String!
description: String
releaseYear: Int
rentalDuration: Int!
rentalRate: String!
length: Int
replacementCost: String!
rating: FilmratingEnumType
specialFeatures: String
lastUpdate: Date!
Inventories(query: JSON, dissociate: Boolean): [Inventory]
Language(query: JSON, dissociate: Boolean): Language
OriginalLanguage(query: JSON, dissociate: Boolean): Language
Actors(query: JSON, dissociate: Boolean): [Actor]
Categories(query: JSON, dissociate: Boolean): [Category]
FilmText(query: JSON, dissociate: Boolean): FilmText
}
query
Films(query: JSON): [Film]
query {
Films(query: {
where: {
length: {
_andOp: {
_gteOp: 60,
_lteOp: 70,
}
},
releaseYear: 2006
}
}) {
length
title
releaseYear
Actors {
lastName
}
}
}
Here, we juste want films for witch length is in [60, 70], and released in 2006 (there is no other release date in the database);
Operators should be formatted this way : _${operator}Op
where operator
is a key from Sequelize.Op
.
query {
Films(query: {
where: {
length: {
_andOp: {
_gteOp: 60,
_lteOp: 70,
}
},
releaseYear: 2006
}
}) {
length
title
releaseYear
Actors(query: {
required: true
where: {
lastName: "DEAN"
}
}) {
firstName
lastName
}
}
}
The same request as above, but this time we filtered movies having actors named "DEAN".
required
Lets say we haved nullized "Mike HILLYER" store_id
in the database.
query {
Staffs {
fullName
Store(query: { required: true }) {
storeId
}
}
}
This time, "Mike HILLYER" is excluded, since he has no Store
.
Note that this is not compatible with the dissociate
: true
argument on the same node since the required is passed to the include
dependencies tree of the root requested element by Sequelize.
order, offset, limit
query {
Films(query: {
where: {
length: {
_andOp: {
_gteOp: 60,
_lteOp: 70,
}
},
releaseYear: 2006
}
limit: 3
offset: 0
order: [[ "length", "DESC" ], [ "title", "DESC" ]]
}) {
length
title
releaseYear
Inventories(query: {
limit: 3
offset: 0
}) {
inventoryId
}
}
}
The limit
and offset
options are supported in nested elements but be warned that the Sequelize separate
flag is automatically setted in association. (See Sequelize documentation).
Note that the query
argument is more limited (by default) on nested nodes since its injected in association includes to the root findAll
Sequelize query. To retrieve the behavior of root query (for example, for being able to use order
) in nested nodes, you must dissociate
the node.
group
The group clause uses existing attributes to apply aggregation functions. Note that the node must be dissociated to be applied (dissociate: true
).
query {
Suppliers(query: { where: {id: 5}}) {
id
Products {
id
label
CustomerOrders(query: {
transform: {
quantity: {
fn: [
"SUM",
{ col: [ "quantity" ]}
]
},
price: {
fn: [
"AVG",
{ col: [ "price" ]}
]
},
date: {
fn: [
"concat",
{
cast: [
{
fn: [
"DATEPART",
{ literal: [ "year" ]},
{ col: [ "date" ]}
]
},
"varchar"
]
},
"/",
{
cast: [
{
fn: [
"DATEPART",
{ literal: [ "week" ]},
{ col: [ "date" ]}
]
},
"varchar"
]
}
]
},
year: {
fn: [
"DATEPART",
{ literal: [ "year" ]},
{ col: [ "date" ]}
]
},
week: {
fn: [
"DATEPART",
{ literal: [ "week" ]},
{ col: [ "date" ]}
]
}
},
where: {
date: {
_gtOp: "2020-08-31T00:00:00.000Z"
}
},
group: ["year", "week"],
order: [["date", "ASC"]]
}, dissociate: true) {
quantity
date
price
}
}
}
}
The transform
object introduce the possibility to transform fields using Sequelize static methods. For grouping to work, you need a transform
with an aggregation function for each requested attribute. New aliases (here year
and week
) cannot be requested as it's not part of the schema.
{
"data": {
"Suppliers": [
{
"id": "5",
"Products": [
{
"id": "3215",
"label": "SALAD",
"CustomerOrders": [
{
"quantity": "18.546",
"date": "2020/50",
"price": "2.5"
},
{
"quantity": "20.846",
"date": "2020/51",
"price": "2.5"
},
{
"quantity": "2.284",
"date": "2020/52",
"price": "2.5"
}
]
},
{
"id": "3219",
"label": "APPLE",
"CustomerOrders": [
{
"quantity": "2.184",
"date": "2020/36",
"price": "2.25"
},
{
"quantity": "12.602",
"date": "2020/39",
"price": "4.1"
},
{
"quantity": "2.61",
"date": "2020/40",
"price": "4.1"
}
]
},
...
]
}
]
}
}
Mutations
For input types, when possible, a fake union type
is used (For example, here : InputLanguageByLanguageIdOrLanguageCreateInputThroughFilms
). It can be resolved either by a node embedding only its primary key (InputLanguageByLanguageId
: refering to an existing one), or any else that will be considered as a creation type (LanguageCreateInputThroughFilms
). The LanguageCreateInputThroughFilms
is the LanguageCreateInput
without the Films
field : when you add a Language
through a Film
entity, you cannot add other Films
to this new Language
(at the present time).
input FilmCreateInput {
filmId: ID
title: String!
description: String
releaseYear: Int
rentalDuration: Int
rentalRate: String
length: Int
replacementCost: String
rating: FilmratingEnumType
specialFeatures: String
lastUpdate: Date
Inventories: [InputInventoryByInventoryIdOrInventoryCreateInputThroughFilm]
Language: InputLanguageByLanguageIdOrLanguageCreateInputThroughFilms!
OriginalLanguage: InputLanguageByLanguageIdOrLanguageCreateInputThroughFilms
Actors: [InputActorByActorIdOrActorCreateInputThroughFilms]
Categories: [InputCategoryByCategoryIdOrCategoryCreateInputThroughFilms]
FilmText: InputFilmTextByFilmIdOrFilmTextCreateInputThroughFilm
}
input InputFilmByFilmId {
filmId: ID
}
scalar InputFilmByFilmIdOrFilmCreateInputThroughLanguage
...
input FilmCreateInputThroughLanguage {
filmId: ID
title: String!
description: String
releaseYear: Int
rentalDuration: Int
rentalRate: String
length: Int
replacementCost: String
rating: FilmratingEnumType
specialFeatures: String
lastUpdate: Date
Inventories: [InputInventoryByInventoryIdOrInventoryCreateInputThroughFilm]
OriginalLanguage: InputLanguageByLanguageIdOrLanguageCreateInputThroughFilms
Actors: [InputActorByActorIdOrActorCreateInputThroughFilms]
Categories: [InputCategoryByCategoryIdOrCategoryCreateInputThroughFilms]
FilmText: InputFilmTextByFilmIdOrFilmTextCreateInputThroughFilm
}
...
GraphQL union input type is under discussions at the present time. Here it is simulated through a SCALAR
type. It works well but the unioned types are not exposed in the schema. It can be tricky to debug when having type issues since GraphQL consider the SCALAR as final type. To workaround this problem, I use explicit naming (InputInventoryByInventoryIdOrInventoryCreateInputThroughFilm
) and add mock queries to expose hidden types :
mockFilm(
InputInventoryByInventoryId: InputInventoryByInventoryId
InputLanguageByLanguageId: InputLanguageByLanguageId
InputActorByActorId: InputActorByActorId
InputCategoryByCategoryId: InputCategoryByCategoryId
InputFilmTextByFilmId: InputFilmTextByFilmId
FilmCreateInputThroughInventories: FilmCreateInputThroughInventories
FilmCreateInputThroughLanguage: FilmCreateInputThroughLanguage
FilmCreateInputThroughOriginalLanguage: FilmCreateInputThroughOriginalLanguage
FilmCreateInputThroughActors: FilmCreateInputThroughActors
FilmCreateInputThroughCategories: FilmCreateInputThroughCategories
FilmCreateInputThroughFilmText: FilmCreateInputThroughFilmText
): Film
input FilmCreateInputThroughInventories {
filmId: ID
title: String!
description: String
releaseYear: Int
rentalDuration: Int
rentalRate: String
length: Int
replacementCost: String
rating: FilmratingEnumType
specialFeatures: String
lastUpdate: Date
Language: InputLanguageByLanguageIdOrLanguageCreateInputThroughFilms!
OriginalLanguage: InputLanguageByLanguageIdOrLanguageCreateInputThroughFilms
Actors: [InputActorByActorIdOrActorCreateInputThroughFilms]
Categories: [InputCategoryByCategoryIdOrCategoryCreateInputThroughFilms]
FilmText: InputFilmTextByFilmIdOrFilmTextCreateInputThroughFilm
}
...
An atomic
boolean parameter is available for all mutations to enable/disable the use of transactions (default is true
). When transactions are enabled (by default), if something goes wrong, transaction for whole mutation is rolled back and pending publications for subscriptions are canceled.
create
type RootMutationType {
...
createFilm(input: FilmCreateInput, atomic: Boolean): Film
...
}
mutation {
createFilm(input: {
title: "Interstellar"
# a new language
Language: {
name: "Breton"
}
# an existing language
OriginalLanguage: {
languageId: 2
}
# new one to one
FilmText: {
title: "FilmText title"
description: "FilmText description"
}
Categories: [
# a new Category
{
name: "New category"
}
# an existing Category
{
categoryId: 14
}
# a new Category
{
name: "Other category"
# we can create other nested creations / associations as well
}
]
}) {
filmId
Categories {
categoryId
name
}
Language {
languageId
}
OriginalLanguage {
languageId
}
}
}
The new ids are pulled in the response :
{
"data": {
"createFilm": {
"filmId": "1001",
"Categories": [
{
"categoryId": "14",
"name": "Sci-Fi"
},
{
"categoryId": "17",
"name": "New category"
},
{
"categoryId": "18",
"name": "Other category"
}
],
"Language": {
"languageId": "7"
},
"OriginalLanguage": {
"languageId": "2"
}
}
}
}
update
Update is a little bit different since we can omit any field to update only those needed, and wee need a query to select entities we want to apply mutation on.
Consequently non nullable fields have to become nullable.
input FilmUpdateInput {
filmId: ID
title: String
description: String
releaseYear: Int
rentalDuration: Int
rentalRate: String
length: Int
replacementCost: String
rating: FilmratingEnumType
specialFeatures: String
lastUpdate: Date
Inventories: [InputInventoryByInventoryIdOrInventoryCreateInputThroughFilm]
addInventories: [InputInventoryByInventoryIdOrInventoryCreateInputThroughFilm]
Language: InputLanguageByLanguageIdOrLanguageCreateInputThroughFilms
OriginalLanguage: InputLanguageByLanguageIdOrLanguageCreateInputThroughFilms
Actors: [InputActorByActorIdOrActorCreateInputThroughFilms]
addActors: [InputActorByActorIdOrActorCreateInputThroughFilms]
removeActors: [InputActorByActorId]
Categories: [InputCategoryByCategoryIdOrCategoryCreateInputThroughFilms]
addCategories: [InputCategoryByCategoryIdOrCategoryCreateInputThroughFilms]
removeCategories: [InputCategoryByCategoryId]
FilmText: InputFilmTextByFilmIdOrFilmTextCreateInputThroughFilm
}
type RootMutationType {
...
updateFilm(query: JSON, input: FilmUpdateInput, atomic: Boolean): [Film]
...
}
We can see that all associations are union types, so you can create new entities or refer to existing one.
The only exception is obviously for belongsToMany
associations removal that can only refer to existing models (here: removeCategories: [InputCategoryByCategoryId]
).
mutation {
updateFilm(query: { where: { filmId: 1001 } }, input: {
title: "Other title"
Language: {
name: "Portuguese"
}
OriginalLanguage: {
languageId: 2
}
Categories: [
{
name: "New topic"
}
{
name: "Other topic"
}
{
categoryId: 10
}
]
}) {
filmId
Categories {
categoryId
name
}
Language {
languageId
}
OriginalLanguage {
languageId
}
}
}
delete
type RootMutationType {
...
deleteFilm(query: JSON, atomic: Boolean): [Film]
...
}
mutation {
deleteFilm(query: { where: { filmId: 1001 } }) {
filmId
}
}
Subscriptions
The builder creates three subscriptions for each model :
type RootSubscriptionType {
...
createdCountry: [Country]
updatedCountry: [Country]
deletedCountry: [CountryID]
...
}
# Country ID type
type CountryID {
countryId: ID
}
The CountryID
type is the Country
type, reduced to the only field we are sure to know after deletion : the primary key.
For subscriptions to work, you must provide a pubSub
entry to the GraphQL context.
Warning : the cascading delete / set null is not handled yet, and will not trigger publications.
See the the example for testing purpose. Subscritions are tested with jest. Example :
mutation {
createFilm(input: {
title: "initial title"
# a new language
Language: {
name: "initial language"
Films: [{
title: "New Film"
}]
}
# new one to one
FilmText: {
title: "B"
description: "autre"
}
# an existing language
OriginalLanguage: {
languageId: 1
}
Categories: [
# a new Category
{
name: "initial new category"
}
# an existing Category
{
categoryId: 14
}
# a new Category
{
name: "initial other category"
# we can create other nested creations / associations as well
}
]
}, atomic: true) {
filmId
title
FilmText {
filmId
title
}
Categories {
categoryId
name
}
Language {
languageId
name
}
OriginalLanguage {
languageId
name
}
}
}
The above mutation will trigger following publications to subscribtors :
{
"data": {
"updatedCategory": [
{
"categoryId": "14",
"name": "Sci-Fi",
"Films": [
{
"filmId": "1001",
"title": "initial title"
},
{
"filmId": "985",
"title": "WONDERLAND CHRISTMAS"
},
{
"filmId": "972",
"title": "WHISPERER GIANT"
}
]
}
]
}
}
{
"data": {
"createdCategory": [
{
"categoryId": "17",
"name": "initial new category",
"Films": [
{
"filmId": "1001",
"title": "initial title"
}
]
},
{
"categoryId": "18",
"name": "initial other category",
"Films": [
{
"filmId": "1001",
"title": "initial title"
}
]
}
]
}
}
{
"data": {
"createdFilm": [
{
"filmId": "1001",
"title": "initial title",
"Categories": [
{
"categoryId": "14",
"name": "Sci-Fi"
},
{
"categoryId": "17",
"name": "initial new category"
},
{
"categoryId": "18",
"name": "initial other category"
}
],
"Language": {
"languageId": "7",
"name": "initial language"
}
}
]
}
}
{
"data": {
"createdFilmText": [
{
"filmId": "1001",
"title": "B",
"Film": {
"filmId": "1001"
}
}
]
}
}
{
"data": {
"updatedLanguage": [
{
"languageId": "1",
"name": "English",
"Films": [
{
"filmId": "1000",
"title": "ZORRO ARK"
},
{
"filmId": "999",
"title": "ZOOLANDER FICTION"
},
{
"filmId": "998",
"title": "ZHIVAGO CORE"
}
],
"OriginalLanguageFilms": [
{
"filmId": "1001",
"title": "initial title"
}
]
}
]
}
}
{
"data": {
"createdLanguage": [
{
"languageId": "7",
"name": "initial language",
"Films": [
{
"title": "initial title"
}
],
"OriginalLanguageFilms": []
}
]
}
}
Meta infos
The generated schema exposes an other type of queries that aims to provide information about how to validate data on the client side.
type FilmMeta {
validators: FilmValidator
defaultValues: FilmDefaultValue
}
type FilmValidator {
filmId: JSON
title: JSON
description: JSON
releaseYear: JSON
rentalDuration: JSON
rentalRate: JSON
length: JSON
replacementCost: JSON
rating: JSON
specialFeatures: JSON
lastUpdate: JSON
languageId: JSON
originalLanguageId: JSON
}
type FilmDefaultValue {
rentalDuration: Int!
rentalRate: String!
replacementCost: String!
rating: FilmratingEnumType!
lastUpdate: Date!
}
For each field of validators
, the provided object is the corresponding Sequelize validator (Regex have to be quoted as strings to be compatible with JSON
). defaultValues
is only present if at least one field has default value.
API
schemaBuilder
schemaBuilder(sequelize, {
namespace: '',
extraModelFields: () => ({}),
extraModelQueries: () => ({}),
extraModelTypes: () => ({}),
subscriptionsContextFilter: (emitterContext, context) => true
maxManyAssociations: 3,
debug: false
})
namespace
A prefix for generated queries and types.
extraModelFields({ modelsTypes, nameFormatter, logger }, model)
A callback that lets you add custom fields to Sequelize models types. It will be called each time a GraphQL model type is built. The resulting object will be merged with model's GraphQL type fields.
In the example, we use this hook to inject rich country infos coming from restcountries.eu to our Country
GraphQL type.
type Country {
countryId: ID!
country: String!
lastUpdate: Date!
infos: JSON
Cities(query: JSON, dissociate: Boolean): [City]
}
In the example, we only return the field infos
for Country
model, but we can inject other common fields to all models if needed.
query {
Countries(query: { limit: 3 }) {
country
infos
}
}
{
"data": {
"Countries": [
{
"country": "Afghanistan",
"infos": [
{
"name": "Afghanistan",
"topLevelDomain": [
".af"
],
"alpha2Code": "AF",
"alpha3Code": "AFG",
"callingCodes": [
"93"
],
...
}
]
},
...
]
}
}
extraModelQueries({ modelsTypes, nameFormatter, logger }, model, queries)
A callback that lets you add custom queries depending on generated Sequelize models types.
To be documented...
extraModelTypes({ modelsTypes, nameFormatter, logger }, model)
A callback that lets you add custom types depending on generated Sequelize models types.
To be documented...
subscriptionsContextFilter(emitterContext, context)
A filter passed to subcriptions subscribe
and resolve
methods in order to filter events based on emitter and subscriber context.
Example to not resend events to initiator of mutation (given that te client provides a uuid header and server handles this to context) :
{
subscriptionsContextFilter: (emitterContext, context) => emitterContext.user.uuid !== context.user.uuid
}
maxManyAssociations
Limits the number of "parallel" resulting left joins. Default is 3.
debug
Prints debug infos.
getRequestedAttributes(model, fieldNode, infos, logger, map)
To be documented...
beforeResolver(model, { nameFormatter, logger })
To be documented...
findOptionsMerger(fo1, fo2)
To be documented...
Tests
The Sequelize GraphQL Schema Builder example embeds a jest test suite.
Related projects
- MUI App Biolerplate is a complete client / server application that relies on this piece of code.
- MUI CRUDF is a Material-UI component able to handle this API to generate CRUD interfaces