@mgtd/remark-shiki
v2.3.1
Published
shiki with semantic highlighting support
Downloads
54
Readme
remark-shiki
shiki with semantic highlighting support
Usage
see index.test.js
testetstst
#include <cstdio>
const int N = 100005;
int rt, tot, fa[N], ch[N][2], val[N], cnt[N], sz[N];
struct Splay {
void maintain(int x) { sz[x] = sz[ch[x][0]] + sz[ch[x][1]] + cnt[x]; }
bool get(int x) { return x == ch[fa[x]][1]; }
void clear(int x) {
ch[x][0] = ch[x][1] = fa[x] = val[x] = sz[x] = cnt[x] = 0;
}
void rotate(int x) {
int y = fa[x], z = fa[y], chk = get(x);
ch[y][chk] = ch[x][chk ^ 1];
fa[ch[x][chk ^ 1]] = y;
ch[x][chk ^ 1] = y;
fa[y] = x;
fa[x] = z;
if (z) ch[z][y == ch[z][1]] = x;
maintain(x);
maintain(y);
}
void splay(int x) {
for (int f = fa[x]; f = fa[x], f; rotate(x))
if (fa[f]) rotate(get(x) == get(f) ? f : x);
rt = x;
}
void ins(int k) {
if (!rt) {
val[++tot] = k;
cnt[tot]++;
rt = tot;
maintain(rt);
return;
}
int cnr = rt, f = 0;
while (1) {
if (val[cnr] == k) {
cnt[cnr]++;
maintain(cnr);
maintain(f);
splay(cnr);
break;
}
f = cnr;
cnr = ch[cnr][val[cnr] < k];
if (!cnr) {
val[++tot] = k;
cnt[tot]++;
fa[tot] = f;
ch[f][val[f] < k] = tot;
maintain(tot);
maintain(f);
splay(tot);
break;
}
}
}
int rk(int k) {
int res = 0, cnr = rt;
while (1) {
if (k < val[cnr]) {
cnr = ch[cnr][0];
} else {
res += sz[ch[cnr][0]];
if (k == val[cnr]) {
splay(cnr);
return res + 1;
}
res += cnt[cnr];
cnr = ch[cnr][1];
}
}
}
int kth(int k) {
int cnr = rt;
while (1) {
if (ch[cnr][0] && k <= sz[ch[cnr][0]]) {
cnr = ch[cnr][0];
} else {
k -= cnt[cnr] + sz[ch[cnr][0]];
if (k <= 0) {
splay(cnr);
return val[cnr];
}
cnr = ch[cnr][1];
}
}
}
int pre() {
int cnr = ch[rt][0];
while (ch[cnr][1]) cnr = ch[cnr][1];
splay(cnr);
return cnr;
}
int nxt() {
int cnr = ch[rt][1];
while (ch[cnr][0]) cnr = ch[cnr][0];
splay(cnr);
return cnr;
}
void del(int k) {
rk(k);
if (cnt[rt] > 1) {
cnt[rt]--;
maintain(rt);
return;
}
if (!ch[rt][0] && !ch[rt][1]) {
clear(rt);
rt = 0;
return;
}
if (!ch[rt][0]) {
int cnr = rt;
rt = ch[rt][1];
fa[rt] = 0;
clear(cnr);
return;
}
if (!ch[rt][1]) {
int cnr = rt;
rt = ch[rt][0];
fa[rt] = 0;
clear(cnr);
return;
}
int cnr = rt;
int x = pre();
splay(x);
fa[ch[cnr][1]] = x;
ch[x][1] = ch[cnr][1];
clear(cnr);
maintain(rt);
}
} tree;
int main() {
int n, opt, x;
for (scanf("%d", &n); n; --n) {
scanf("%d%d", &opt, &x);
if (opt == 1)
tree.ins(x);
else if (opt == 2)
tree.del(x);
else if (opt == 3)
printf("%d\n", tree.rk(x));
else if (opt == 4)
printf("%d\n", tree.kth(x));
else if (opt == 5)
tree.ins(x), printf("%d\n", val[tree.pre()]), tree.del(x);
else
tree.ins(x), printf("%d\n", val[tree.nxt()]), tree.del(x);
}
return 0;
}
const languages = [
...commonLangIds,
...commonLangAliases,
...otherLangIds
]
% This quicksort algorithm is extracted from Chapter 7, Introduction
% to Algorithms (3rd edition)
\begin{algorithm}
\caption{Quicksort}
\begin{algorithmic}
\PROCEDURE{Quicksort}{$A, p, r$}
\IF{$p < r$}
\STATE $q = $ \CALL{Partition}{$A, p, r$}
\STATE \CALL{Quicksort}{$A, p, q - 1$}
\STATE \CALL{Quicksort}{$A, q + 1, r$}
\ENDIF
\ENDPROCEDURE
\PROCEDURE{Partition}{$A, p, r$}
\STATE $x = A[r]$
\STATE $i = p - 1$
\FOR{$j = p$ \TO $r - 1$}
\IF{$A[j] < x$}
\STATE $i = i + 1$
\STATE exchange
$A[i]$ with $A[j]$
\ENDIF
\STATE exchange $A[i]$ with $A[r]$
\STATE $x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}$
\ENDFOR
\ENDPROCEDURE
\end{algorithmic}
\end{algorithm}
接下来的 $m$ 行中的第 $i$ 行包含两个正整数 $l_i$ 和 $r_i$ ($1\le l_i\le r_i\le n$),表示第 $i$ 次操作在区间 $[l_i,r_i]$ 上进行。