@martincik/fast-text-language-detection
v0.2.8
Published
Language detection with facebook fast-text model
Downloads
1
Maintainers
Readme
Fast-Text Language Detection
In a search for the best option for predicting a language from text which didn't require a large machine learning model, it appeared that fast-text, created by FaceBook, was the best option (https://towardsdatascience.com/benchmarking-language-detection-for-nlp-8250ea8b67c).
Installation
npm i --save @smodin/fast-text-language-detection
Note: This will install the fast-text model by facebook which is about 150MB. You also need python installed, if you're running an alipine docker see how to easily do this here
Usage
Prediction
Testing
;(async () => {
const LanguageDetection = require('@smodin/fast-text-language-detection')
const lid = new LanguageDetection()
console.log(await lid.predict('FastText-LID provides a great language identification'))
console.log(await lid.predict('FastText-LID bietet eine hervorragende Sprachidentifikation'))
console.log(await lid.predict('FastText-LID fornisce un ottimo linguaggio di identificazione'))
console.log(await lid.predict('FastText-LID fournit une excellente identification de la langue'))
console.log(await lid.predict('FastText-LID proporciona una gran identificación de idioma'))
console.log(await lid.predict('FastText-LID обеспечивает отличную идентификацию языка'))
console.log(await lid.predict('FastText-LID提供了很好的語言識別'))
})()
The second argument is the number of returned responses, i.e.
lid.predict(text, 10)
will return an array of 10 results
Output
[ { lang: 'en', prob: 0.6313226222991943, isReliableLanguage: true } ]
[ { lang: 'de', prob: 0.9137917160987854, isReliableLanguage: true } ]
[ { lang: 'it', prob: 0.974501371383667, isReliableLanguage: true } ]
[ { lang: 'fr', prob: 0.7358829379081726, isReliableLanguage: true } ]
[ { lang: 'es', prob: 0.9211937189102173, isReliableLanguage: true } ]
[ { lang: 'ru', prob: 0.9899846911430359, isReliableLanguage: true } ]
[ { lang: 'zh', prob: 0.8515647649765015, isReliableLanguage: true } ]
isReliableLanguage
is true if there were 10 + test results and accuracy was 95% or more
Other Helpers
const LanguageDetection = require('@smodin/fast-text-language-detection')
const lid = new LanguageDetection()
const languageIsoCodes = lid.languageIsoCodes // ['af', 'als', 'am', 'an', 'ar', ...]
Similar Libaries
FastText has been used and implemented in other computer languages.
- Python[https://github.com/indix/whatthelang]
Reference Documents
- FastText model 176: https://fasttext.cc/docs/en/language-identification.html
Accuracy from Benchmark Testing
Long Input (30 to 250 characters)
Translated sentence data was obtained from tatoeba.org. Additional meta data can be found in benchmark-testing/results/RESULTS_with_metadata.csv
.
Testing the 550k sentences of 30 - 250 characters took less than 30 seconds (personal macbook Pro).
| Language (101) | Symbol (alternates) | Count (558260) | Accuracy (30 - 250 chars) | Mislabels | False Positives | | -------------------------------- | ------------------- | -------------- | ------------------------- | ---------------- | --------------- | | English | en | 22428 | 1 | | 120 | | Greek | el | 12039 | 1 | | 0 | | Hebrew | he | 8616 | 1 | | 0 | | Japanese | ja | 2169 | 1 | | 0 | | Georgian | ka | 1973 | 1 | | 0 | | Bengali | bn | 1164 | 1 | | 131 | | Thai | th | 572 | 1 | | 0 | | Mandarin Chinese | zh | 568 | 1 | | 0 | | Malayalam | ml | 517 | 1 | | 0 | | Korean | ko | 482 | 1 | | 7 | | Burmese | my | 216 | 1 | | 0 | | Tamil | ta | 205 | 1 | | 0 | | Kannada | kn | 118 | 1 | | 1 | | Telugu | te | 102 | 1 | | 0 | | Punjabi (Eastern) | pa | 88 | 1 | | 0 | | Lao | lo | 70 | 1 | | 0 | | Gujarati | gu | 57 | 1 | | 0 | | Tibetan | bo | 20 | 1 | | 0 | | Divehi, Dhivehi, Maldivian | dv | 15 | 1 | | 0 | | Sinhala | si | 9 | 1 | | 0 | | Amharic | am | 3 | 1 | | 0 | | German | de | 22014 | 0.9998637230853094 | en | 64 | | Polish | pl | 17768 | 0.999718595227375 | en,eo,de,ro | 88 | | Russian | ru | 17329 | 0.9997114663281205 | bg,kk,uk,mk | 241 | | Hungarian | hu | 17942 | 0.9996655891204994 | tr,br,it,de,en | 43 | | Hindi | hi | 5362 | 0.999627004848937 | mr | 0 | | Vietnamese | vi | 13000 | 0.9996153846153846 | eo,hu,fr | 9 | | Turkish | tr | 19919 | 0.9995983734123199 | eo,en,it,fr,nds | 1092 | | Esperanto | eo | 17841 | 0.999551594641556 | it,es,pt,fr,ceb | 13 | | French | fr | 23076 | 0.999523314265904 | en,es,it,ru | 238 | | Marathi | mr | 10461 | 0.9995220342223496 | hi | 2 | | Uyghur | ug | 3692 | 0.9991874322860238 | ba,ru,hu | 0 | | Finnish | fi | 17406 | 0.9990807767436516 | it,et,en,hr,de | 37 | | Italian | it | 18326 | 0.9989632216522972 | es,de,fr,en,la | 2207 | | Spanish | es | 18227 | 0.998134635430954 | pt,it,io,ca,ia | 3476 | | Armenian | hy | 518 | 0.9980694980694981 | de | 0 | | Arabic | ar | 8761 | 0.9978312977970552 | arz,fa,es,mzn,en | 0 | | Ukrainian | uk | 14285 | 0.9963598179908996 | ru,sr | 133 | | Macedonian | mk | 14465 | 0.9959903214656066 | bg,sr,ru | 93 | | Dutch | nl | 19626 | 0.9934780393355752 | en,af,de,nds,fr | 382 | | Lithuanian | lt | 13835 | 0.9933501987712324 | fi,pl,eo,pt,sr | 20 | | Portuguese | pt | 20174 | 0.9933082184990581 | es,gl,it,en,fr | 1149 | | Khmer | km | 379 | 0.9920844327176781 | az,et | 0 | | Urdu | ur | 963 | 0.9906542056074766 | pnb,fa,ro,en | 9 | | Czech | cs | 10863 | 0.9898738838258307 | sk,pl,hu,sl,en | 1 | | Swedish | sv | 12188 | 0.9886773875943551 | no,da,en,fi,id | 174 | | Romanian | ro | 13560 | 0.9886430678466077 | es,fr,it,en,pt | 133 | | Bulgarian | bg | 11144 | 0.9869885139985642 | mk,ru,uk,sr | 2 | | Ossetian | os | 59 | 0.9830508474576272 | ru | 0 | | Icelandic | is | 6364 | 0.9803582652419862 | et,no,da,hu,cs | 4 | | Kazakh | kk | 2232 | 0.9802867383512545 | ru,tr,tt,uk,ky | 4 | | Tagalog | tl | 10351 | 0.9737223456670853 | ceb,en,id,es,war | 21 | | Tatar | tt | 8178 | 0.9680851063829787 | az,tr,ru,fi,kk | 13 | | Basque | eu | 2999 | 0.9676558852950984 | it,nl,id,en,io | 14 | | Tajik | tg | 30 | 0.9666666666666667 | ru | 0 | | Belarusian | be | 6253 | 0.9625779625779626 | uk,ru,pl,bg,sr | 0 | | Latvian | lv | 1243 | 0.9597747385358005 | lt,hr,sr,fi,eo | 4 | | Chuvash | cv | 460 | 0.9543478260869566 | ru,uk,ba,sr | 0 | | Breton | br | 2451 | 0.9543043655650755 | fr,nl,eu,de,pt | 0 | | Bashkir | ba | 120 | 0.95 | tt,av | 0 | | Indonesian | id | 9372 | 0.949637217242851 | ms,it,en,eo,tr | 16 | | Danish | da | 15299 | 0.948035819334597 | no,sv,de,en,nn | 2 | | Estonian | et | 1227 | 0.9356153219233904 | fi,en,hu,it,nl | 5 | | Latin | la | 11437 | 0.9206085511934948 | fr,it,en,es,pt | 292 | | Irish | ga | 867 | 0.9065743944636678 | en,gd,ca,kv,cs | 14 | | Scottish Gaelic | gd | 542 | 0.8966789667896679 | en,ga,de,fr,pam | 2 | | Welsh | cy | 619 | 0.8917609046849758 | es,en,la,kw,de | 8 | | Catalan | ca | 4725 | 0.8833862433862434 | es,pt,fr,it,ro | 0 | | Kyrgyz | ky | 66 | 0.8787878787878788 | ru,kk | 4 | | Cornish | kw | 426 | 0.8779342723004695 | en,cy,de,br,sq | 1 | | Assamese | as | 960 | 0.8635416666666667 | bn | 0 | | Volapük | vo | 806 | 0.8511166253101737 | id,de,fi,en,eo | 15 | | Serbian | sr | 13494 | 0.8489699125537276 | hr,sh,mk,bs,sl | 1050 | | Slovak | sk | 4370 | 0.8263157894736842 | cs,pl,sl,no,sr | 45 | | Maltese | mt | 52 | 0.8076923076923077 | es,cs,pt,sr,eo | 7 | | Norwegian Nynorsk | nn (no) | 657 | 0.7990867579908676 | da,sv,de,es,fi | 29 | | Afrikaans | af | 1632 | 0.7879901960784313 | nl,en,fr,de,nds | 0 | | Occitan | oc | 2861 | 0.7679133170220203 | ca,es,fr,pt,it | 27 | | Interlingua | ia | 18782 | 0.7500798636992866 | es,it,fr,la,pt | 82 | | Sanskrit | sa | 11 | 0.7272727272727273 | hi,ne | 0 | | Chechen | ce | 7 | 0.7142857142857143 | mn,ru | 0 | | Slovenian | sl | 372 | 0.6774193548387096 | sr,hr,bs,pl,eo | 62 | | Frisian | fy | 107 | 0.6635514018691588 | nl,en,de,af,fr | 8 | | Javanese | jv | 260 | 0.6461538461538462 | id,en,ms,ko,su | 5 | | Yoruba | yo | 5 | 0.6 | sk,rm | 1 | | Luxembourgish | lb | 217 | 0.5944700460829493 | de,nds,sv,fr,nl | 3 | | Galician | gl | 2618 | 0.5790679908326967 | pt,es,it,fr,ca | 8 | | Turkmen | tk | 3793 | 0.5710519377801213 | tr,uz,en,et,io | 0 | | Croatian | hr | 2222 | 0.5333033303330333 | sr,sh,bs,sl,pl | 45 | | Aragonese | an | 4 | 0.5 | es | 0 | | Ido | io | 2905 | 0.48055077452667816 | eo,es,it,pt,tr | 7 | | Interlingue | ie | 2007 | 0.4718485301444943 | es,it,fr,en,ia | 7 | | Limburgan, Limburger, Limburgish | li | 3 | 0.3333333333333333 | de | 1 | | Walloon | wa | 16 | 0.3125 | fr,pt,tl,oc,en | 1 | | Somali | so | 32 | 0.21875 | fi,eo,cy,en,az | 1 | | Corsican | co | 5 | 0.2 | it,fr | 0 | | Sundanese | su | 11 | 0.18181818181818182 | id,ms,es | 19 | | Haitian Creole | ht | 15 | 0.06666666666666667 | br,fr,su,diq,no | 3 | | Romansh | rm | 16 | 0.0625 | it,fr,en,tl,qu | 3 | | Bosnian | bs | 139 | 0.03597122302158273 | sr,hr,sh,pl,sl | 0 | | Manx | gv | 6 | 0 | cy,fr,nl,et,en | 0 |
Short Form (10 to 40 characters)
As a test of accuracy on shorter phrases, the min and max character count was changed to 10 - 40, and similar results can be seen for major languages, but less known languages suffer significantly:
| Language (102) | Symbol (alternates) | Count (837539) | Accuracy (10 - 40 chars) | Mislabels | | -------------------------------- | ------------------- | -------------- | ------------------------ | ---------------- | | Thai | th | 3399 | 1 | | | Malayalam | ml | 525 | 1 | | | Burmese | my | 243 | 1 | | | Tamil | ta | 229 | 1 | | | Telugu | te | 220 | 1 | | | Punjabi (Eastern) | pa | 156 | 1 | | | Amharic | am | 154 | 1 | | | Kannada | kn | 126 | 1 | | | Gujarati | gu | 116 | 1 | | | Sinhala | si | 37 | 1 | | | Tibetan | bo | 29 | 1 | | | Divehi, Dhivehi, Maldivian | dv | 15 | 1 | | | Japanese | ja | 28060 | 0.9999643620812545 | zh | | Greek | el | 24980 | 0.9999599679743795 | en | | Hebrew | he | 26461 | 0.9999244170666264 | en,yi | | Korean | ko | 6128 | 0.9996736292428199 | tr,ja | | Armenian | hy | 1855 | 0.9994609164420485 | de | | Bengali | bn | 4132 | 0.9992739593417231 | bpy,as | | Marathi | mr | 25633 | 0.9989466703078064 | hi,gom,pt,new | | English | en | 17094 | 0.9986544986544986 | nl,it,hu,eo,es | | Mandarin Chinese | zh | 17801 | 0.9978652884669401 | wuu,yue,ja,sr,pt | | Turkish | tr | 18879 | 0.9978282748026909 | en,eo,az,es,it | | Russian | ru | 20855 | 0.9977942939343083 | uk,bg,mk,sr,be | | German | de | 17223 | 0.9974452766649248 | en,it,fr,es,sv | | Uyghur | ug | 6135 | 0.9973920130399349 | ar,ba,tt,ca,hu | | Vietnamese | vi | 13130 | 0.9971058644325971 | it,pms,eo,pt,fr | | Esperanto | eo | 21641 | 0.9966729818400258 | it,es,tr,pt,pl | | Georgian | ka | 4550 | 0.996043956043956 | xmf,en | | Hindi | hi | 11497 | 0.9958249978255197 | mr,dty,new,bh,ne | | Italian | it | 20449 | 0.995598806787618 | es,en,fr,eo,pt | | Arabic | ar | 25531 | 0.9955348399984333 | arz,fa,en,mzn,ps | | French | fr | 16040 | 0.9953865336658354 | en,it,ia,es,pt | | Hungarian | hu | 20843 | 0.9952502039053879 | en,pt,it,nl,eo | | Lao | lo | 183 | 0.994535519125683 | el | | Polish | pl | 21386 | 0.9940147760216964 | en,it,eo,de,cs | | Khmer | km | 1252 | 0.9920127795527156 | az,ru,sr,et | | Spanish | es | 20498 | 0.9895599570689824 | pt,it,fr,ca,en | | Finnish | fi | 20731 | 0.9849500747672567 | it,en,eo,et,nl | | Portuguese | pt | 18352 | 0.9833805579773321 | es,it,gl,fr,en | | Macedonian | mk | 23602 | 0.9830099144140327 | ru,bg,sr,uk | | Ukrainian | uk | 23251 | 0.982667412154316 | ru,mk,bg,be,sr | | Urdu | ur | 1583 | 0.9797852179406191 | pnb,fa,ug,en,ro | | Dutch | nl | 19349 | 0.9720915809602564 | en,de,nds,af,fr | | Lithuanian | lt | 24184 | 0.9597667879589812 | eo,fi,sr,pt,pl | | Czech | cs | 25189 | 0.951605859700663 | sk,pl,hu,en,sl | | Chuvash | cv | 1332 | 0.9481981981981982 | ru,uk,krc,ba,sr | | Tatar | tt | 8283 | 0.9471206084751902 | ru,tr,az,kk,ky | | Swedish | sv | 24466 | 0.9464563067113545 | da,no,en,de,eo | | Icelandic | is | 7745 | 0.9449967721110394 | da,et,cs,no,de | | Bulgarian | bg | 19328 | 0.9352235099337748 | mk,ru,uk,sr,tg | | Sanskrit | sa | 135 | 0.9259259259259259 | hi,ne,mr | | Kazakh | kk | 2373 | 0.9258322798145807 | uk,tt,tr,ru,ky | | Romanian | ro | 18367 | 0.9235041106332008 | it,es,en,fr,pt | | Tagalog | tl | 11133 | 0.9193389023623462 | ceb,en,it,id,es | | Ossetian | os | 205 | 0.9170731707317074 | ru,hy,sr,kv,mrj | | Indonesian | id | 9707 | 0.9138765839085197 | ms,en,it,eo,tr | | Danish | da | 22539 | 0.9081591907360576 | no,sv,de,en,fr | | Latin | la | 24699 | 0.8979310903275436 | it,fr,en,es,pt | | Basque | eu | 4570 | 0.8851203501094091 | it,id,hu,nl,eo | | Belarusian | be | 9005 | 0.8785119378123265 | ru,uk,bg,mk,pl | | Cornish | kw | 3757 | 0.8759648655842428 | en,de,cy,es,br | | Tajik | tg | 48 | 0.875 | ru,uk | | Latvian | lv | 2198 | 0.8735213830755232 | lt,es,sr,en,fr | | Breton | br | 5468 | 0.8579005120702268 | en,fr,pt,de,eu | | Irish | ga | 1977 | 0.840161861406171 | en,pt,es,ca,gd | | Bashkir | ba | 128 | 0.8359375 | tt,ru,sr,av,kk | | Sindhi | sd | 6 | 0.8333333333333334 | ur | | Serbian | sr | 23128 | 0.8054738844690419 | hr,mk,sh,ru,sl | | Estonian | et | 3077 | 0.8043548911277218 | fi,en,hu,tr,it | | Scottish Gaelic | gd | 753 | 0.7822045152722443 | en,ga,de,fr,pam | | Welsh | cy | 1167 | 0.7660668380462725 | en,es,kw,la,it | | Volapük | vo | 3941 | 0.7609743719868054 | id,en,eo,fi,de | | Kyrgyz | ky | 227 | 0.7533039647577092 | ru,kk,tt,mn,bg | | Catalan | ca | 5313 | 0.7504234895539243 | es,pt,it,fr,en | | Assamese | as | 2635 | 0.7127134724857686 | bn,bpy,en,tl,bh | | Yoruba | yo | 31 | 0.7096774193548387 | ga,pl,en,qu,ckb | | Occitan | oc | 4096 | 0.70751953125 | es,fr,ca,pt,it | | Interlingua | ia | 14949 | 0.7073382834972239 | it,es,fr,en,la | | Afrikaans | af | 3299 | 0.6808123673840558 | nl,en,de,fr,nds | | Norwegian Nynorsk | nn (no) | 1287 | 0.6798756798756799 | da,sv,de,es,hu | | Maltese | mt | 165 | 0.6727272727272727 | hu,en,es,it,pl | | Slovak | sk | 13877 | 0.6105786553289616 | cs,pl,sl,no,sr | | Chechen | ce | 25 | 0.6 | bg,sr,mn,ba,uk | | Interlingue | ie | 6538 | 0.5183542367696543 | es,it,en,fr,eo | | Ido | io | 6495 | 0.4857582755966128 | eo,es,it,pt,tr | | Slovenian | sl | 908 | 0.46255506607929514 | sr,hr,cs,pl,bs | | Javanese | jv | 548 | 0.45255474452554745 | id,en,ko,ms,hu | | Turkmen | tk | 4585 | 0.45169029443838604 | tr,en,uz,et,pl | | Croatian | hr | 4186 | 0.4362159579550884 | sr,sh,bs,sl,pl | | Galician | gl | 3245 | 0.4200308166409861 | pt,es,it,en,fr | | Luxembourgish | lb | 732 | 0.3975409836065574 | de,fr,en,nds,nl | | Frisian | fy | 282 | 0.36879432624113473 | nl,en,nds,de,fr | | Walloon | wa | 37 | 0.2972972972972973 | fr,en,no,it,gn | | Corsican | co | 13 | 0.23076923076923078 | it,min,ro,ilo,id | | Sundanese | su | 18 | 0.2222222222222222 | id,es,en,it,lmo | | Somali | so | 61 | 0.14754098360655737 | en,fi,et,cy,su | | Limburgan, Limburger, Limburgish | li | 34 | 0.14705882352941177 | de,nl,en,no,is | | Haitian Creole | ht | 58 | 0.1206896551724138 | en,fr,br,la,de | | Manx | gv | 30 | 0.06666666666666667 | en,it,pt,fr,kw | | Bosnian | bs | 520 | 0.04423076923076923 | sr,hr,sh,it,pl | | Aragonese | an | 73 | 0.0136986301369863 | es,pt,it,en,fr | | Romansh | rm | 11 | 0 | it,pt,fr,en,tl |
Additional Insights
During testing, the highest incorrect probability was often near 1, which means it's not possible to use a high possibility to suggest a correct assessment
The lowest probability for a correct assessment varried widely. Although these were good predictors for some of the very accurate languages (99.9%), other languages were sometimes as low as a .09 probability. This means it's not possible to use a low probability as an accurate assessment of a false positive.
To improve expectations of an incorrect result, you can use the difference in probability of result 1 and 2. It appears that the verage probability difference between 1 and 2 is somewhat of an indicator of a potentially incorrect prediction.
Anything over 100 characters is strongly accurate, though there isn't enough sentences for test data to assure this for all the test languages. 55 out of 82 languages that had this data had a 99% or better accuracy, 63 had 90%+ accuracy, 72 had 75%+ accuracy. For 200+ characters, 42 of 47 languages had a perfect score, though most had less than 10 test cases.
Spanish tends to give the most false positives based on sheer quantity of percentage of false positives.
In attempting to add a second check with
franc
for a smaller difference in probabilities between language 1 and 2 (i.e. less than 0.2), only the worst performing languages showed significant benefit. There doesn't seem to be a trend for any other languages. You can see this data on theCOMPARISONS.md
.
Improving Accuracy
Most incorrect suggestions are due to non-text characters (i.e. punctuation) that should be filtered out to provide better results. Please submit an issue for incorrect suggestions so we can work on improving the accuracy.
Comparison NPM Libaries
Success benchmarking has been checked with other popular libraries (notably franc
and languagedetect
) and results are included in benchmark-testing/results/COMPARISONS.md
Sample Dockerfile
Note: You need to have python installed to make this work in alpine-node
FROM mhart/alpine-node:14
WORKDIR /usr/src/app
COPY package*.json ./
RUN apk add --no-cache --virtual .gyp \
python \
make \
g++ \
&& npm ci --only=production \
&& apk del .gyp
COPY . ./
CMD [ "npm", "start" ]
TODO List
- Improve accuracy by replicating the test analysis from https://towardsdatascience.com/benchmarking-language-detection-for-nlp-8250ea8b67c and attempt to improve the
formatText()
function by strategically choosing punctuation / non-text characters.
This is an improved modification of https://www.npmjs.com/package/fasttext-lid
Created with <3 for https://smodin.io