@marko/run
v0.4.12
Published
The Marko application framework.
Downloads
1,064
Keywords
Readme
Features
- 🚀 Fastest way to build a Marko app
- 💖 Scales from zero configuration
- ⚡️ Pages live-reload as you make changes
- 📁 Directory-based routes, layouts, and middleware
- 🖌️ TypeScript powered editor support
- 🧬 Designed with web standards to run anywhere
And when you build your production-ready app:
- 🔥 Blazing fast server-side rendering
- 🌊 Streams content to users ASAP
- 📦 Partial hydration & automatic code splitting
- 🚢 Deploy to multiple platforms
Installation
Warning This project is in BETA - use at your own peril, but please do provide helpful feedback.
npm install @marko/run
Getting Started / Zero Config
marko-run
makes it easy to get started without little to no config. The package ships with a default Vite config and node-based adapter.
To get started from a template:
npm init marko -- -t basic
cd ./<PROJECT_NAME>
npm run dev
Or manually create a project:
- Install
@marko/run
- Create file
src/routes/+page.marko
- Run
npm exec marko-run
Finally open http://localhost:3000
🚀
CLI
dev
- Start a development server in watch mode
> npm exec marko-run
or (with explicit sub command)
> npm exec marko-run dev
build
- Create a production build
> npm exec marko-run build
preview
- Create a production build and start the preview server
> npm exec marko-run preview
File-based Routing
Routes Directory
The plugin looks for route files in the configured routes directory. By default, that’s ./src/routes
, relative to the Vite config file.
To change what directory routes are found in:
// vite.config.ts
import { defineConfig } from "vite";
import marko from "@marko/run/vite";
export default defineConfig({
plugins: [marko({
routesDir: 'src/pages' // Use `./src/pages` (relative to this file) as the routes directory
})]
})
Routeable Files
The router only recognizes certain filenames which are all prefixed with +
(Why?). The following filenames will be discovered in any directory inside your application’s routes directory.
+page.marko
These files establish a route at the current directory path which will be served for GET
requests with the HTML content of the page. Only one page may exist for any served path.
+layout.marko
These files provide a layout component, which will wrap all nested layouts and pages.
Layouts are like any other Marko component, with no extra constraints. Each layout receives the request, path params, URL, and route metadata as input, as well as a renderBody
which refers to the nested page that is being rendered.
<main>
<h1>My Products</h1>
<${input.renderBody}/> // render the page or layout here
</main>
+handler.*
These files establish a route at the current directory path which can handle requests for GET
, POST
, PUT
, and DELETE
HTTP methods.
Typically, these will be .js
or .ts
files depending on your project. Like pages, only one handler may exist for any served path. A handler should export functions
- Valid exports are functions named
GET
,POST
,PUT
, orDELETE
. - Exports can be one of the following
- Handler function (see below)
- Array of handler functions - will be composed by calling them in order
- Promise that resolves to a handler function or array of handler functions
- Handler functions are synchronous or asynchronous functions that
Receives a
context
andnext
argument,- The
context
argument contains the WHATWG request object, path parameters, URL, and route metadata. - The
next
argument will call the page forGET
requests where applicable or return a204
response.
- The
Return a WHATWG response, throw a WHATWG response, and return undefined. If the function returns undefined the
next
argument with be automatically called and used as the response.export function POST(context, next) { const { request, params, url, meta } = context; return new Response('Successfully updated', { status: 200 }); } export function PUT(context, next) { // `next` will be called for you by the runtime } export async function GET(context, next) { // do something before calling `next` const response = await next(); // do something with the response from `next` return response; } export function DELETE(context, next) { return new Response('Successfully removed', { status: 204 }); }
+middleware.*
These files are like layouts, but for handlers. Middleware files are called before handlers and let you perform arbitrary work before and after.
Note: Unlike handlers, middleware run for all HTTP methods.
- Expects a
default
export that can be one of the following- Handler function (see below)
- Array of handler functions - will be composed by calling them in order
- Promise that resolves to a handler function or array of handler functions
- Handler functions are synchronous or asynchronous functions that
Receives a
context
andnext
argument,- The
context
argument contains the WHATWG request object, path parameters, URL, and route metadata. - The
next
argument will call the page forGET
requests where applicable or return a204
response.
- The
Return a WHATWG response, throw a WHATWG response, and return undefined. If the function returns undefined the
next
argument with be automatically called and used as the response.export default async function(context, next) { const requestName = `${context.request.method} ${context.url.href}`; let success = true; console.log(`${requestName} request started`) try { return await next(); // Wait for subsequent middleware, handler, and page } catch (err) { success = false; throw err; } finally { console.log(`${requestName} completed ${success ? 'successfully' : 'with errors'}`); } }
+meta.*
These files represent static metadata to attach to the route. This metadata will be automatically provided on the route context
when invoking a route.
Special Files
In addition to the files above which can be defined in any directory under the routes directory, some special files can only be defined at its top level.
These special pages are subject to a root layout file (pages/+layout.marko
in the default configuration).
+404.marko
This special page responds to any request where:
- The
Accept
request header includestext/html
- And no other handler or page rendered the request
Responses with this page will have a 404
status code.
+500.marko
This special page responds to any request where:
- The
Accept
request header includestext/html
- And an uncaught error occurs while serving the request
Responses with this page will have a 500
status code.
Execution Order
Given the following routes directory structure
When the path /about
is requested, the routable files execute in the following order:
- Middlewares from root-most to leaf-most
- Handler
- Layouts from root-most to leaf-most
- Page
sequenceDiagram
participant MW1 as routes/+middleware.js
participant MW2 as routes/about/+middleware.js
participant H as routes/about/+handler.js
participant L1 as routes/+layout.marko
participant L2 as routes/about/+layout.marko
participant P as routes/about/+page.marko
Note over L1,P: Combined at build-time as a single component
MW1->>MW2: next()
MW2->>H: next()
H->>L1: next()
L1->L2: ${input.renderBody}
L2->P: ${input.renderBody}
L1-->>H: Stream Response
H-->>MW2: Response
MW2-->>MW1: Response
Path Structure
Within the routes directory, the directory structure determines the path from which the route is served. There are four types of directory names: static, pathless, dynamic, and catch-all.
Static directories - The most common type, and the default behavior. Each static directory contributes its name as a segment in the route's served path, like a traditional fileserver. Unless a directory name matches the requirements for one of the below types, it is seen as a static directory.
Examples:
/foo /users /projects
Pathless directories - These directories do not contribute their name to the route's served path. Directory names that start with an underscore (
_
) will be ignored when parsing the route.Examples:
/_users /_public
Dynamic directories - These directories introduce a dynamic parameter to the route's served path and will match any value at that segment. Any directory name that starts with a single dollar sign (
$
) will be a dynamic directory, and the remaining directory name will be the parameter at runtime. If the directory name is exactly$
, the parameter will not be captured but it will be matched.Examples:
/$id /$name /$
Catch-all directories - These directories are similar to dynamic directories and introduce a dynamic parameter, but instead of matching a single path segment, they match to the end of the path. Any directory that starts with two dollar signs (
$$
) will be a catch-all directory, and the remaining directory name will be the parameter at runtime. In the case of a directory named$$
, the parameter name will not be captured but it will match. Catch-all directories can be used to make404
Not Found routes at any level, including the root.Because catch-all directories match any path segment and consume the rest of the path, you cannot nest route files in them and no further directories will be traversed.
Examples:
/$$all /$$rest /$$
Flat Routes
Flat routes let you define paths without needing additional folders. Instead the folder structure can be defined either in the file or folder name. This allows you to decouple your routes from your folder structure or co-locate them as needed. To define a flat route, use periods (.
) to deliniate each path segment. This behaves exacly like creating a new folder and each segment will be parsed using the rules described above for static, dynamic and pathless routes.
Flat routes syntax can be used for both directories and routable files (eg. pages, handlers, middleware, etc.). For these files, anything preceeding the plus (+
) will be treated as the flat route.
For example to define a page at /projects/$projectId/members
with a root layout and a project layout:
Without flat routes you would have a file structure like:
routes/
projects/
$projectId/
$members/
+page.marko
+layout.marko
+layout.marko
With flat routes move the path defined by the folders into the files and separate with a period
routes/
+layout.marko
projects+layout.marko
projects.$projectId.members+page.marko
Additionally, you can continue to organize files under folders to decrease duplication and use flat route syntax in the folder name
routes/
projects.$projectId/
+layout.marko
members+page.marko
+layout.marko
Finally, flat routes and routes defined with directories are all treated equally and merged together. For example this page will have layout
routes/
projects/
$projectId/
+layout.marko
projects.$projectId+page.marko
Multiple Paths, Groups and Optional Segments
Along with descibing multiple segements, flat route syntax supports defining routes that match more than one path and segments that are optional. To describe a route that matches multiple paths, use a comma (,
) and define each route.
For example the following page matches /projects/$projectId/members
and /projects/$projectId/people
routes/
projects.$projectId.members,projects.$projectId.people+page.marko
This file name is a bit long so you might do something like this
routes/
projects.$projectId
members,people+page.marko
We can simplify this by introducing another concept: grouping. Groups allows you to define segments within a flat route that match multiple sub-paths by surrounding them with parentheses ((
and )
). For the example, this means you can do the following:
routes/
projects.$projectId.(members,people)+page.marko
This is a simple example of grouping but you can nest groups and make them as complicated as you want.
The last concept is optionallity. By introducing an empty segment or pathless segment along with another value you can make that segment optional. For example, If we want a page that matches /projects
and /projects/home
, you can create a flat route that optionally matches home
routes/
projects.(home,)+page.marko
or
routes/
projects.(home,_pathless)+page.marko
While both of these create a route which matches the paths, they have slightly different semantics. Using a pathless segment is the same as creating a pathless folder which allows you to isolate middleware and loayouts. Using an empty segement is the same as defining a file at the current location.
Vite Plugin
This package’s Vite plugin discovers your route files, generates the routing code, and registers the @marko/vite
plugin to compile your .marko
files.
// vite.config.ts
import { defineConfig } from "vite";
import marko from "@marko/run/vite"; // Import the Vite plugin
export default defineConfig({
plugins: [marko()] // Register the Vite plugin
})
Adapters
Adapters provide the means to change the development, build, and preview process to fit different deployment platforms and runtimes while allowing authors to write idiomatic code.
Specify your adapter in the Vite config when registering the @marko/run
plugin
// vite.config.ts
import { defineConfig } from "vite";
import marko from "@marko/run/vite";
import netlify from "@marko/run-adapter-netlify" // Import the adapter
export default defineConfig({
plugins: [marko({
adapter: netlify({ edge: true }) // Configure and apply the adapter
})]
})
Available Adapters
Runtime
Generally, when using an adapter, this runtime will be abstracted away.
import * as Run from '@marko/run/router`;
Emdedding in Existing Server
Run.fetch
async function fetch<T>(request: Request, platform: T) => Promise<Response | void>;
This asynchronous function takes a WHATWG Request
object and an object containing any platform-specific data you may want access to, and returns any of
- a WHATWG
Response
object (generated from executing any matched route files) undefined
(if the request was not explicitly handled)- a
404
status code response (if no route matches the requested path) - a
500
status code response (if an error occurs)
Express example:
import express from "express";
import * as Run from "@marko/run/router";
express()
.use(async (req, res, next) => {
const request = ...; // code to create a WHATWG Request from `req`
const response = await Run.fetch(request, {
req,
res
});
if (response) {
// ...code to apply a response to `res`
} else {
next();
}
})
.listen(3000);
Other APIs
In some cases, you might want more control over when route matching and invocation (creating a response) occur. For instance, you may have middleware in your server which needs to know if there is a matched route. The runtime provides these additional methods:
Run.match
interface Route {
params: Record<string, string>;
meta: unknown;
}
function match(method: string, pathname: string) => Route | null;
This synchronous function takes an HTTP method and path name and returns an object representing the best match, or null
if no match is found.
params
- a{ key: value }
collection of any path parameters for the routemeta
- metadata for the route
Run.invoke
async function invoke(route: Route, request: Request, platform: any) => Promise<Response | void>;
This asynchronous function takes a route object returned by Run.match the request and platform data and returns a response in the same way the Run.fetch does.
Express example:
import express from "express";
import * as Run from "@marko/run/router";
express()
.use((req, res) => {
const matchedRoute = Run.match(req.method, req.path);
if (matchedRoute) {
req.match = matchedRoute;
}
})
// ...other middleware
.use(async (req, res, next) => {
// Check if a route was previously matched
if (!req.match) {
next();
return;
}
const request = ...; // code to create a WHATWG Request from `req`
const response = await Run.invoke(req.match, request, {
req,
res
});
if (response) {
// ...code to apply a response to `res`
} else {
next();
}
})
.listen(3000);
TypeScript
Global Namespace
marko/run
provides a global namespace MarkoRun
with the following types:
MarkoRun.Handler
- Type that represents a handler function to be exported by a +handler or +middleware file
MarkoRun.Route
- Type of the route's params and metadata
MarkoRun.Context
- Type of the request context object in a handler and $global
in your Marko files. This type can be extended using TypeScript's module and interface merging by declaring a Context
interface on the @marko/run
module within your applcation code
declare module "@marko/run" {
interface Context {
customPropery: MyCustomThing // will be globally defined on MarkoRun.Context
}
}
MarkoRun.Platform
- Type of the platform object provided by the adapter in use. This interface can be extended in that same way as Context
(see above) by declaring a Platform
interface:
declare module "@marko/run" {
interface Platform {
customPropery: MyCustomThing // will be globally defined on MarkoRun.Platform
}
}
Generated Types
If a TSConfig file is discovered in the project root, the Vite plugin will automatically generate a .d.ts file which provides more specific types for each of your middleware, handlers, layouts, and pages. This file will be generated at .marko-run/routes.d.ts
whenever the project is built - including dev.
Note TypeScript will not include this file by default. You should use the Marko VSCode plugin and add it in your tsconfig.
These types are replaced with more specific versions per routable file:
MarkoRun.Handler
- Overrides context with specific MarkoRun.Context
MarkoRun.Route
- Adds specific parameters and meta types
- In middleware and layouts which are used in many routes, this type will be a union of all possible routes that the file will see
MarkoRun.Context
- In middleware and layouts which are used in many routes, this type will be a union of all possible routes that the file will see.
- When an adapter is used, it can provide types for the platform
Beta Roadmap
- Error handling
- Error component
- Redirect component
What about @marko/serve?
Once stable @marko/run will replace @marko/serve and improves upon that project in several critical ways.
- Special "route files" (e.g.
+page.marko
) improve the developer ergonomics quite substantially. While they may cause a double take initially, making these explicit allows colocating additional components, tests, stories, config, utilities, and whatever else you need alongside the page components. With@marko/serve
it was far too easy to "accidentally" serve some of your test fixtures :see-no-evil:. - @marko/serve was built around Webpack. Since Webpack doesn't have great support for SSR, a lot of this work was up to us. This was not only a maintenance burden but also lead to some rough edges such as no HMR support (just full page reloading in dev). By switching to Vite with its first-class SSR support, things all come together much more smoothly.
- @marko/serve was primarily designed with a node target in mind. @marko/run instead supports an "adapter" model, where you can author in web standard APIs and build your application to run in Node, Deno, Netlify, Cloudflare, and even a static site.
- The programmatic API of
@marko/serve
left some to be desired which made it difficult to integrate into existing development servers and projects. Because of this, public-facing applications at eBay (the largest consumer of Marko) were not able to bring in@marko/serve
. With@marko/run
we've worked from the ground up to ensure a flexible enough programmatic API to allow embedding in existing complex applications. Because of this, we're confident that@marko/run
will see much more use than@marko/serve
and more investment from us! - Built-in layout management. Strictly speaking, Marko does not need the concept of
+layout.marko
"route file". If you've used Marko before you know it's very easy to treat layouts as normal components. But by bringing these layouts into the router we're able to reduce the amount of JavaScript naively sent to the browser, reduce the amount of boilerplate, and prime ourselves for some plans we have for after Marko 6 is out :eyes:.
There's more of course, but we're committed to making @marko/run
the best way to build a Marko application.