@malvfr/zap
v1.0.5
Published
Database data seeding tool, outputting realistic SQL and CSV data
Downloads
6
Maintainers
Readme
ZAP - Seed your database with realistic data
Zap is a realistic data seeding CLI, supporting CSV and SQL format. You can choose among many categories of data to create a large quantities of realistic data to populate your database.
Installation
Use NPM to perform a global installation of Zap CLI.
npm install -g @malvfr/zap
Usage
In your working directory, create a YAML file containing the desired database schema. After the CLI usage, the SQL or CSV files will be created at your working directory.
You can display information about Zap CLI through the "h" flag:
zap -h
Given your schema file is named schema.yml
zap -f schema.yml
If you want to specify a locale, use the "l" flag (See the supported locales below)
zap -f schema.yml -l 'en_US'
If you want to generate a CSV output, use the "c" flag
zap -c -f schema.yml
Supported generator categories
So far, Zap CLI supports a few types of generators, soon more will be added:
- Address
- Date
- Enum (You can bring your own values to be randomly selected)
- ID
- Git
- Person
- Random
- Vehicle
Supported locales
Zap support the locales supported by Faker.js. If a generator data is not provided in the desired language, it will fallback to English.
- az
- ar
- cz
- de
- de_AT
- de_CH
- en
- en_AU
- en_AU_ocker
- en_BORK
- en_CA
- en_GB
- en_IE
- en_IND
- en_US
- en_ZA
- es
- es_MX
- fa
- fi
- fr
- fr_CA
- fr_CH
- ge
- hy
- hr
- id_ID
- it
- ja
- ko
- nb_NO
- ne
- nl
- nl_BE
- pl
- pt_BR
- pt_PT
- ro
- ru
- sk
- sv
- tr
- uk
- vi
- zh_CN
- zh_TW
Building the schema
Zap is a schema based generators, so you will need to provide a schema with your tables definitions.
To build your schema you will need to create a YAML file in the following format:
tables:
- name: 'YOUR_TABLE' # Name of the table
quantity: 10 # The amount of records to be generated.
fields: # Definition of the columns and their values generators.
- name: 'COLUMN_1_NAME'
category:
# pick of one of the supported categories:
# additional options
- name: 'COLUMN_2_NAME'
category:
# pick of one of the supported categories:
# additional options
Generator options
Each category may have it's own options to produce data. Place the options in the desired *category" object (Such as ID, Address, Person...)
Address
Available types:
- city
- state
- country
- streetName
- streetAddress
- countryCode
- zipCode
Options:
category:
address:
type: state
abbr: true | false # Abbreviates the state
Date
Available types:
- weekday
- future
- between
- past
- month
Options:
category:
date:
type: weekday
abbr: true | false # Abbreviates the weekday
# ---------------------------------------------------------
type: month
abbr: true | false # Abbreviates the month
# ---------------------------------------------------------
type: past
dateLocale: 'en-gb, pt-br, en-us...' # Outputs date in the desired format. The locale should be a Javascript compatible locale string.
# ---------------------------------------------------------
type: between
start: 'YYYY-MM-DD' #the starting date in 'YYYY-MM-DD' format
end: 'YYYY-MM-DD' #the limit date in 'YYYY-MM-DD' format
dateLocale: 'en-gb, pt-br, en-us...'
# ---------------------------------------------------------
type: future
dateLocale: 'en-gb, pt-br, en-us...'
Enum
You can bring your own data in the values array to be randomly selected.
category:
enum:
values:
- an array
- containing
- data
- to be randomly
- selected
Git
Available types:
- branch
- commitEntry
- commitMessage
- commitSha
- shortSha
category:
git:
type: one of the available types
ID
Available types:
- uuid
- sequentialInteger
- randomInteger
Options:
category:
ID:
type: sequentialInteger
start: 20 # The starting number of the generated data. Increments 1 at each iteration.
# ---------------------------------------------------------
type: randomInteger
min: 100 # The minimum number to be randomized
max: 100 # The maximum number to be randomized
Person
Available types:
- firstName
- lastName
- middleName
- jobTitle
- prefix
- suffix
- title
- jobDescriptor
- jobArea
- jobType
Options:
category:
person:
type: firstName
gender: M | F # Determines the gender to be generated
# ---------------------------------------------------------
type: middleName
gender: M | F
# ---------------------------------------------------------
type: lastName
gender: M | F
Random
Available types:
- string
- integer
- boolean
- float
- hexaDecimal
- word
- words
- image
Options:
category:
person:
type: string
length: 40 # Determines the string's length to be generated
# ---------------------------------------------------------
type: float
precision: 3 # The number's precision after separator.
min: 100 # The minimum number to be randomized
max: 100 # The maximum number to be randomized
# ---------------------------------------------------------
type: integer
precision: 3 # The number's precision after separator.
min: 100 # The minimum number to be randomized
max: 100 # The maximum number to be randomized
Random
Available types:
- vehicle
- color
- manufacturer
- model
- type
- vin
- fuel
Options:
category:
vehicle:
type: one of the available types
Schema Example
Example of a two tables schema with two columns outputting 25 and 30 records respectively.
tables:
- name: 'CARS'
quantity: 25
fields:
- name: 'CAR_ID'
category:
ID:
type: sequentialInteger
start: 100
- name: 'PRICE'
category:
random:
type: float
min: 10000
max: 20000
precision: 4
- name: 'MODEL'
category:
vehicle:
type: vehicle
- name: 'COLOR'
category:
vehicle:
type: color
- name: 'ACQUISITION_DATE'
category:
date:
type: between
start: '2010-03-01'
end: '2020-05-01'
dateLocale: 'en-gb'
- name: 'USER'
quantity: 30
fields:
- name: 'USER_ID'
category:
ID:
type: uuid
- name: 'PASSWORD'
category:
random:
type: string
length: 100
- name: 'USER_TYPE'
category:
enum:
values:
- admin
- regular
- temporary
- name: 'FIRST_NAME'
category:
person:
type: firstName
gender: F
- name: 'LAST_NAME'
category:
person:
type: lastName
- name: 'ADDRESS'
category:
address:
type: streetAddress
- name: 'BIRTHDAY'
category:
date:
type: past
Contributing
Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.
Please make sure to update tests as appropriate.