@majkit/fp-ts-schema
v1.1.10
Published
Tiny typed data decoder
Downloads
2
Readme
🧬 Fp-Ts Schema
Fp-Ts Schema is a fork of schemawax (a tool for creating typed decoders to help you get to the DNA of your data) implementing fp-ts.
To add @majkit/fp-ts-schema
to your project, do:
# Bun
bun add @majkit/fp-ts-schema
# NPM
npm install @majkit/fp-ts-schema
# Pnpm
pnpm install @majkit/fp-ts-schema
# Yarn
yarn add @majkit/fp-ts-schema
It is only 2.1 kB!
📋 How to use
I recommend checking out some examples to get an idea of what this library can do for you. (spoiler: a lot)
You can start in a couple of simple steps!
Build a decoder:
import * as D from 'schemawax'
const userDecoder = D.object({
name: D.string,
preferredName: D.nullable(D.string),
emailVerified: D.boolean
})
// You can get the shape of the data into a type, use D.Output<…>
type User = D.Output<typeof userDecoder>
Get your data:
// Usually, you would get the data using 'JSON.parse(response)' or something
const data = {
name: 'Bob',
preferredName: O.none,
emailVerified: false
}
Decode your data:
const parsed = userDecoder.decode(data)
if (parsed) {
console.log(parsed)
} else {
console.log('Failed to decode')
}
The decoders are fully typed so you can confidently use your data in TypeScript.
You can either delve into the documentation (highly recommended) or check out some of our quick recipes.
📄 Full documentation
Methods
Decoders can consume data through one of these methods:
Decoder.decode
This method returns an Either<DecoderError,D>
type based on whether the decoder would fail or pass.
D.string.decode('a string') // E.Right<'somestringvalue'>
D.string.decode(42) // E.Left<DecoderError>
// Using it in practice
const decoder = D.array(D.boolean)
const data = [true, false]
const validationResult = decoder.decode(data)
if (either.isLeft) {
// TypeScript now knows that result has error so you can log the error message
console.error(validationResult.left.message)
return
}
// TypeScript now knows that result has data which is an array of booleans
validationResult.right.map(console.log)
Decoder.is
This method returns true or false based on whether the decoder would fail. It also serves as a type guard.
D.string.is('string') // true
D.string.is(42) // false
// Type guard out of this
const decoder = D.array(D.boolean)
const data = [true, false]
if (decoder.is(data)) {
// TypeScript now knows that data is an array of booleans
data.map(console.log)
} else {
console.log('This is not and array of booleans')
}
Primitives
All primitive decoders work the same
D.string
This is a simple decoder: if the input is a string, return the string, else fail (e.g. return null
or throw an error).
D.string.decode('a string') // E.Right<'a string'>
D.string.decode(42) // E.Left<DecoderError>
D.string.decode({}) // E.Left<DecoderError>
D.number
D.number.decode(42) // E.Right<42>
D.number.decode('a string') // E.Left<DecoderError>
D.boolean
D.boolean.decode(true) // E.Right<true>
D.boolean.decode('not a boolean') // E.Left<DecoderError>
D.literal
Literal decoder only decodes the exact same value (compared using ===
).
D.literal('data').decode('data') // E.Right<'data'>
D.literal('error').decode('error') // E.Right<'error'>
D.literal(0).decode(0) // E.Right<0>
D.literal('data').decode('error') // E.Left<DecoderError>
D.literal(0).decode(1) // E.Left<DecoderError>
D.literalUnion
D.literalUnion
combines D.literal
and D.oneOf
the way you would expect.
const decoder = D.literalUnion('data', 'error') // D.Decoder<'data' | 'error'>
decoder.decode('data') // E.Right<'data'>
decoder.decode('error') // E.Right<'error'>
decoder.decode('not in there') // E.Left<DecoderError>
D.regex
D.regex
checks if a given regular expression matches the data. (This is particularly useful when you want to transform the data afterwards. See andThen
)
const decoder = D.regex(/^\d+$/)
decoder.decode('138') // E.Right<'138'>
decoder.decode('Not nice') // E.Left<DecoderError>
With transformation afterwards:
decoder.decode('138').andThen(Number) // E.Right<138>
D.nullable
If you wrap a decoder in D.nullable
, then it wither decodes to its supposed type or falls back to O.none
.
const decoder = D.nullable(D.string)
decoder.decode('hello') // E.Right<O.some('hello')>
decoder.decode(null) // E.Right<O.none>
decoder.decode(15) // E.Left<DecoderError>
D.succeed
This decoder always succesfully decodes to the value provided.
D.succeed(true).decode('unnecessary string') // E.Right<true>
D.succeed(1234).decode({}) // E.Right<1234>
Combinators
D.oneOf
This decoder tries all the decoders passed to it in order and returns the first one that succeeds.
const decoder = D.oneOf(D.string, D.number)
decoder.decode('a string') // E.Right<'a string'>
decoder.decode(42) // E.Right<42>
decoder.decode(false) // E.Left<DecoderError>
D.allOf
This decoder tries all the decoders passed to it in order and returns the first one that succeeds.
const decoder = D.allOf(
D.object({
a: D.string,
}),
D.object({
b: D.number,
c: D.boolean
})
)
decoder.decode({ a: 'a string', b: 132, c: true }) // E.Right<{ a: 'a string', b: 132, c: true }>
decoder.decode({ a: 'a string' }) // E.Left<DecoderError>
decoder.decode(false) // E.Left<DecoderError>
D.tuple
Using this you can comfortably decode TS tuples. (for example from JSON arrays)
const minMaxDecoder = D.tuple(D.number, D.number)
const data = JSON.parse('{ "minmax": [18, 99] }')
D.object({ // More on this below
required: {
minmax: minMaxDecoder
}
}) // { minmax: [18, 99] }
minmax
is now typed as [number, number]
and not as number[]
D.tuple(D.string, D.string).decode(['Michael', 'Jackson']) // E.Right<['Michael', 'Jackson']>
Longer arrays get stripped at the end to fit the length of the tuple. Shorter arrays with not enough elements fail to decode.
D.array
The array decoder takes another decoder with which it tries to decode a whole JSON array.
D.array(D.number).decode([1, 2, 3]) // E.Right<[1, 2, 3]>
D.array(D.number).decode([1, 2, 'not a number']) // E.Left<DecoderError>
D.record
This decoder works the same as D.array
except that it parses an object and returns Record<string, D>
.
const decoder = D.record(D.number)
const data = {
preschoolers: 55,
student: 124,
employed: 133,
unemployed: 128,
retired: 67
}
decoder.decode(data) // succeeds with data as 'Record<string, number>'
const wrongData = {
preschoolers: null,
student: '124',
employed: 133,
unemployed: 128,
retired: 67
}
decoder.decode(wrongData) // fails because not all of the values are numbers
D.keyValuePairs
The key-value pairs decoder works the same way as D.record
but returns an array of tuples.
// e.g. with data from previous example
D.keyValuePairs(D.number).forceDecode(data) // succeeds with data as '[[string, number]]'
D.object
This is probably the most important (and the most complicated?) decoder. You can decode whole typed objects like this:
const person = {
name: 'Sarah',
age: 25
}
const personDecoder = D.object({
name: D.string,
age: D.number,
preferredName: D.optional(D.string)
})
personDecoder.forceDecode(person) // succeeds
Careful,
null
is not a missing value! Null is an actual value which is supposed to be handled withD.nullable(…)
Again, if you want the type of personDecoder
, you can use D.Output<…>
type Person = D.Output<typeof personDecoder>
// The above is now equivalent to this interface
interface Person {
name: string
age: number
preferredName: Option<string>
}
D.structuredObject
This decoder is very similar to D.object
but allows you to split your fields into required
and optional
sections:
const person = {
name: 'Sarah',
age: 25
}
const personDecoder = D.structuredObject({
required: {
name: D.string,
age: D.number
},
optional: {
preferredName: D.string
}
})
personDecoder.forceDecode(person) // succeeds
You pass it an object which has required
and optional
object with specified fields. Both required
and optional
are optional so if you don't have any optional field you can just omit the optional
field and vice versa.
Careful,
null
is not a missing value! Null is an actual value which is supposed to be handled withD.nullable(…)
Again, if you want the type of personDecoder
, you can use D.Output<…>
type Person = D.Output<typeof personDecoder>
// The above is now equivalent to this interface
interface Person {
name: string
age: number
preferredName?: string
}
D.recursive
This one allows you to decode recursive types. However, due to the limitations of TypeScript's type system, we can't have type inference and have to write interfaces to decode to manually.
// We have to define the type manually beforehand
// Let's say that we have a user and they have a first name, last name, and a couple of friends
type User = [string, string, User[]]
// Then, we can create the decoder
const userDecoder = D.tuple(D.string, D.string, D.array(D.recursive(() => userDecoder)))
// This is equivalent
const userDecoder = D.tuple(D.string, D.string, D.recursive(() => D.array(userDecoder)))
// This too is equivalent
const userDecoder = D.recursive(() => D.tuple(D.string, D.string, D.array(userDecoder)))
// And the use it the way you're used to
const bradPitt: User = [
'Brad',
'Pitt',
[
[
'Johnny',
'Depp',
[
['Al', 'Pacino', []]
]
],
['Leonardo', 'DiCaprio', []]
]
]
userDecoder.forceDecode(bradPitt) // succeeds with the recursive type User
// Again, you have to define the interface first
interface Category {
name: string,
subcategories: Category[]
}
// And then use `recursive` in the decoder
const categoryDecoder: D.Decoder<Category> = D.object({
required: {
name: D.string,
subcategories: D.array(D.recursive(() => categoryDecoder))
}
})
// This works as well
const categoryDecoder: D.Decoder<Category> = D.recursive(() =>
D.object({
required: {
name: D.string,
subcategories: D.array(categoryDecoder)
}
})
)
const categories = {
name: 'Electronics',
subcategories: [
{
name: 'Computers',
subcategories: [
{ name: 'Desktops', subcategories: [] },
{ name: 'Laptops', subcategories: [] }
]
},
{ name: 'Fridges', subcategories: [] }
]
}
categoryDecoder.forceDecode(categories) // succeeds
Decoder.andThen
& chaining
If the built-in types in JSON aren't enough for you, you can extend the provided decoders. Let's say you want to decode a Date
from an ISO string.
const dateDecoder = D.string.andThen(date => new Date(date))
// You can now use it with
// dateDecoder.decode(…)
// Amazingly, TS is smart enough to allow for this:
type DecodedDate = D.Output<typeof dateDecoder> // is actually Date! and not a string
Also, if you throw an error from inside the function, the decoder fails as it would fail with a bad type or anything else!
You can use this for:
- Transforming to different types
- Renaming fields in objects
- Performing stricter checks (e.g. string length) and failing the decoder by throwing an error
Now you can decode anything you please—you're unstoppable!
🍲 Recipes
We recommend checking out some of our examples.
♻️ Similar projects and differences
io-ts
– Schemawax is much much smallerts-auto-guard
– Takes the opposite approach and creates decoders from interfaces but requires an extra compilation step and tooling. Hard to use in non-TS projectstypescript-is
– Similar tots-auto-guard
but is a transformer for an unofficial version of the TypeScript compiler. Impossible to use without TSyup
– Very similar to Schemawax but has some predefined regexes and is 15× larger! Anythingyup
can do should be possible with Schemawaxzod
– Again, very similar to Schemawax but better than yup. It is ~10 kB and it is more complex than Schemawax but offers more pre-built functions (but nothing that can't be done with Schemawax).ok-computer
– Very simple, only made out of pure functions (which is nice) but there is no type safety or inference