@lulek1410/sudokudlx
v1.0.9
Published
Implementation of Donald E. Knuth's Algorithm X with Dancing Links technique (DLX) with aditional functions adapting it to specifically solve Sudoku
Downloads
9
Maintainers
Readme
Description
This is a JavaScript library implementing Donald E. Knuth's Algorithm X utilising the Dencing Links technique (DLX). Library also contains functionality to use the algorithm to solve sudoku represented as 2D array of numbers in place corresponding to it's coordinates int the sudoku board.
Examples
NOTE: This examples pertains to the @lulek1410/sudokudlx release of dlxlib.
Solving exact cover problem
import { Dlx } from "@lulek1410/sudokudlx"
const matrix = [
[1, 0, 0, 1, 0, 0, 1],
[1, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 1, 1, 0, 1],
[0, 0, 1, 0, 1, 1, 0],
[0, 1, 1, 0, 0, 1, 1],
[0, 1, 0, 0, 0, 0, 1]
]
const dlx = new Dlx()
const solution = dlx.solve(matrix)
// solution = [1, 3, 5]
Solving sudoku
import { Dlx } from "@lulek1410/sudokudlx"
import { SudokuToOptionsMatrixConverter } from "@lulek1410/sudokudlx"
import { convertSolutionToSudoku } from "@lulek1410/sudokudlx"
const sudoku = [
[4, 0, 0, 0, 0, 5, 0, 0, 7],
[9, 0, 0, 3, 0, 0, 0, 0, 2],
[0, 7, 0, 0, 0, 9, 0, 3, 5],
[1, 0, 6, 0, 3, 0, 8, 0, 0],
[0, 9, 0, 6, 0, 0, 5, 4, 1],
[0, 0, 0, 0, 0, 8, 0, 2, 0],
[7, 6, 0, 0, 0, 0, 0, 0, 4],
[0, 0, 0, 0, 5, 0, 0, 0, 3],
[3, 1, 0, 0, 0, 6, 0, 5, 8],
];
const matrix = SudokuToOptionsMatrixConverter.createOptionsMatrix(sudoku);
const solutions = new Dlx().solve(matrix, 2);
const solvedSudoku = convertSolutionToSudoku(matrix, solutions[0]);
//solutions = [
// [
// 0, 37, 56, 57, 76, 113, 123, 151, 161, 162, 163, 173,
// 183, 193, 221, 231, 250, 251, 211, 252, 298, 308, 200, 318,
// 319, 374, 411, 439, 314, 301, 257, 265, 165, 187, 178, 277,
// 440, 219, 224, 376, 119, 441, 391, 3, 62, 469, 479, 480,
// 349, 324, 242, 238, 92, 412, 67, 11, 131, 19, 288, 289,
// 152, 365, 336, 98, 33, 46, 54, 84, 109, 357, 346, 438,
// 396, 408, 426, 450, 476, 134, 145, 454, 461
// ],
// [
// 0, 37, 56, 57, 76, 113, 123, 151, 161, 162, 163, 173,
// 183, 193, 221, 231, 250, 251, 211, 252, 298, 308, 200, 318,
// 319, 374, 411, 439, 314, 301, 257, 265, 165, 187, 178, 277,
// 440, 219, 224, 376, 119, 441, 391, 3, 62, 469, 479, 480,
// 349, 324, 242, 238, 92, 412, 67, 11, 131, 19, 288, 289,
// 152, 365, 336, 98, 33, 46, 54, 84, 109, 357, 346, 438,
// 396, 408, 426, 450, 476, 136, 143, 452, 463
// ]
//]
//
//solvedSudoku = [
// [4, 3, 2, 1, 6, 5, 9, 8, 7],
// [9, 5, 1, 3, 8, 7, 4, 6, 2],
// [6, 7, 8, 2, 4, 9, 1, 3, 5],
// [1, 2, 6, 5, 3, 4, 8, 7, 9],
// [8, 9, 3, 6, 7, 2, 5, 4, 1],
// [5, 4, 7, 9, 1, 8, 3, 2, 6],
// [7, 6, 5, 8, 9, 3, 2, 1, 4],
// [2, 8, 4, 7, 5, 1, 6, 9, 3],
// [3, 1, 9, 4, 2, 6, 7, 5, 8]
//];