npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

@kobra-dev/js-regression

v1.0.12

Published

Package implements linear regression and logistic regression

Downloads

145

Readme

js-regression

Package provides javascript implementation of linear regression and logistic regression

Install

yarn add @kobra-dev/js-regression

Usage

Linear Regression

The sample code below illustrates how to run the multiple linear regression (polynomial in this case):

var jsregression = require('js-regression');

// === training data generated from y = 2.0 + 5.0 * x + 2.0 * x^2 === //
var data = [];
for(var x = 1.0; x < 100.0; x += 1.0) {
  var y = 2.0 + 5.0 * x + 2.0 * x * x + Math.random() * 1.0;
  data.push([x, x * x, y]); // Note that the last column should be y the output
}

// === Create the linear regression === //
var regression = new jsregression.LinearRegression({
  alpha: 0.001, // 
  iterations: 300,
  lambda: 0.0
});
// can also use default configuration: var regression = new jsregression.LinearRegression(); 

// === Train the linear regression === //
var model = regression.fit(data);

// === Print the trained model === //
console.log(model);


// === Testing the trained linear regression === //
var testingData = [];
for(var x = 1.0; x < 100.0; x += 1.0) {
  var actual_y = 2.0 + 5.0 * x + 2.0 * x * x + Math.random() * 1.0;
  var predicted_y = regression.transform([x, x * x]);
  console.log("actual: " + actual_y + " predicted: " + predicted_y); 
}

Logistic Regression

The sample code below illustrates how to run the logistic regression on the iris datsets to classify whether a data row belong to species Iris-virginica:

var jsregression = require('js-regression');
var iris = require('js-datasets-iris');

// === Create the linear regression === //
var logistic = new jsregression.LogisticRegression({
   alpha: 0.001,
   iterations: 1000,
   lambda: 0.0
});
// can also use default configuration: var logistic = new jsregression.LogisticRegression(); 

// === Create training data and testing data ===//
iris.shuffle();

var trainingDataSize = Math.round(iris.rowCount * 0.8);
var trainingData = [];
var testingData = [];
for(var i=0; i < iris.rowCount ; ++i) {
   var row = [];
   row.push(iris.data[i][0]); // sepalLength;
   row.push(iris.data[i][1]); // sepalWidth;
   row.push(iris.data[i][2]); // petalLength;
   row.push(iris.data[i][3]); // petalWidth;
   row.push(iris.data[i][4] == "Iris-virginica" ? 1.0 : 0.0); // output which is 1 if species is Iris-virginica; 0 otherwise
   if(i < trainingDataSize) {
        trainingData.push(row);
   } else {
       testingData.push(row);
   }
}


// === Train the logistic regression === //
var model = logistic.fit(trainingData);

// === Print the trained model === //
console.log(model);

// === Testing the trained logistic regression === //
for(var i=0; i < testingData.length; ++i){
   var probabilityOfSpeciesBeingIrisVirginica = logistic.transform(testingData[i]);
   var predicted = logistic.transform(testingData[i]) >= logistic.threshold ? 1 : 0;
   console.log("actual: " + testingData[i][4] + " probability of being Iris-virginica: " + probabilityOfSpeciesBeingIrisVirginica);
   console.log("actual: " + testingData[i][4] + " predicted: " + predicted);
}

Multi-Class Classification using One-vs-All Logistic Regression

The sample code below illustrates how to run the multi-class classifier on the iris datasets to classifiy the species of each data row:

var classifier = new jsregression.MultiClassLogistic({
   alpha: 0.001,
   iterations: 1000,
   lambda: 0.0
});

iris.shuffle();

var trainingDataSize = Math.round(iris.rowCount * 0.9);
var trainingData = [];
var testingData = [];
for(var i=0; i < iris.rowCount ; ++i) {
   var row = [];
   row.push(iris.data[i][0]); // sepalLength;
   row.push(iris.data[i][1]); // sepalWidth;
   row.push(iris.data[i][2]); // petalLength;
   row.push(iris.data[i][3]); // petalWidth;
   row.push(iris.data[i][4]); // output is species
   if(i < trainingDataSize){
        trainingData.push(row);
   } else {
       testingData.push(row);
   }
}


var result = classifier.fit(trainingData);

console.log(result);

for(var i=0; i < testingData.length; ++i){
   var predicted = classifier.transform(testingData[i]);
   console.log("actual: " + testingData[i][4] + " predicted: " + predicted);
}

Usage In HTML

Include the "node_modules/js-regression/build/jsregression.min.js" (or "node_modules/js-regression/src/jsregression.js") in your HTML <script> tag

The codes in the following html files illustrates how to use them in html pages: