npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

@klarna/nest-lambda-microservice

v0.5.0

Published

NestJS based microservice for writing applications that run on AWS Lambda

Downloads

8

Readme

Nest Lambda Microservice

main Build Status License Developed at Klarna

Custom transporter implementation for running NestJS based applications on AWS Lambda.

The Nest Lambda Microservice is a custom NestJS transporter solution that enables writing NestJS applications to process events on AWS Lambda.

Table of contents

Overview

In addition to the traditional HTTP style architecture, NestJS framework support writing microservice applications that use transport layers other than HTTP. This library implements a custom transporter for AWS Lambda, enabling NestJS applications running on AWS Lambda to process events from various sources (SNS, SQS, AWS Gateway, etc.) using all the concepts NestJS supports such as

A Nest Lambda Microservice application is composed of a client, a broker and a server.

The client provider exposes a public method processEvent(event: unknown, context: Context) that is invoked by the Lambda handler. Based on the event source, the event is mapped into one or multiple messages and published to the broker, e.g. an API Gateway event results in one message, but an SQS Event containing multiple Records, results in multiple messages published separately to the broker.

The client awaits the processing of the messages and assembles a response to be returned by the Lambda handler based on the returned values from the handler that qualified and processed the message.

A sample Lambda application processing SQS events (more examples are available in this folder)

/* index.ts */

import { Context } from 'aws-lambda'

import { getLambdaMicroserviceClient } from './microservice'

export const handler = async (event: unknown, context: Context) => {
  const client = await getLambdaMicroserviceClient()

  return await client.processEvent(event, context)
}
/* microservice.ts */

import { INestMicroservice } from '@nestjs/common'
import { NestFactory } from '@nestjs/core'
import { MicroserviceOptions } from '@nestjs/microservices'
import { ClientToken, LambdaMicroserviceServer } from '@klarna/nest-lambda-microservice'

import { broker } from './broker'
import { AppModule } from './app.module'

let microservice: INestMicroservice
export const getOrCreateLambdaMicroservice = async () => {
  if (!microservice) {
    microservice = await NestFactory.createMicroservice<MicroserviceOptions>(AppModule, {
      strategy: new LambdaMicroserviceServer({ broker }),
      logger: false,
      abortOnError: false,
    })

    await microservice.listen()
  }

  return microservice
}

export const getLambdaMicroserviceClient = async () => {
  return await (await getOrCreateLambdaMicroservice()).resolve(ClientToken)
}
/* app.module.ts */

import { Module } from '@nestjs/common'
import { ClientsModule } from '@nestjs/microservices'
import { ClientToken, LambdaMicroserviceClient } from '@klarna/nest-lambda-microservice'
import { APP_FILTER, APP_PIPE } from '@nestjs/core'

import { broker } from './broker'

import { BooksController } from './books.controller.ts'
import { BooksService } from './books.service.ts'
import { TransformPipe } from './transform.pipe.ts'

@Module({
  controllers: [BooksController],
  providers: [
    BooksService,
    { provide: APP_PIPE, useClass: TransformPipe }
  ],
  imports: [
    ClientsModule.register([{ name: ClientToken, customClass: LambdaMicroserviceClient, options: { broker } }]),
  ],
})
export class AppModule {}
/* transform.pipe.ts */

import { ArgumentMetadata, Injectable, PipeTransform } from '@nestjs/common'

@Injectable()
export class TransformPipe implements PipeTransform {
  public transform(value: any, _metadata: ArgumentMetadata) {
    return this.tryParseJson<any>(value)
  }

  protected tryParseJson<T>(value: string): T | string {
    try {
      return JSON.parse(value)
    } catch (_error: unknown) {
      return value
    }
  }
}
/* books.service.ts */

import { Injectable, Scope } from '@nestjs/common'
import { v4 } from 'uuid'

export interface Book {
  id: string
  title: string
}

@Injectable({ scope: Scope.DEFAULT })
export class BooksService {
  protected books = new Map<string, Book>()
  
  public async saveNewBook(title: string) {
    const book = { id: v4(), title }

    this.books.set(book.id, book)

    return book
  }
}
/* create-book.dto.ts */

import { IsString } from 'class-validator'

export class CreateBookDto {
  @IsString()
  public title: string
}
/* books.controller.ts */

import { Controller } from '@nestjs/common'
import { MessagePattern, Payload } from '@nestjs/microservices'
import { SqsRecordPattern, UsePartialPatternMatch } from '@klarna/nest-lambda-microservice'

import { CreateBookDto } from './create-book.dto.ts'

@Controller()
@UsePartialPatternMatch()
export class BooksController {
  constructor(protected readonly booksService: BooksService) {}

  @MessagePattern<Partial<SqsRecordPattern>>({ Operation: 'CreateBook' }) // Can be anything set on the SQS Record attributes
  public async createBook(@Payload('body') sqsRecordBody: CreateBookDto) {
    // The transform pipe parsed the serialised sqs record body
    await this.booksService.saveNewBook(sqsRecordBody.title)
  }
}

Pattern Matching

To fulfill the NestJS microservice contract, the nest-lambda-microservice transporter implements the mapping of the incoming Lambda event to the NestJS microservice message pattern based on the Lambda event source.

Full message pattern qualification

The message pattern is used to qualify a specific controller handler to process the event. The handler matching exactly the message pattern qualifies to process the message:

@Controller()
export class Controller {
  @MessagePattern({ action: 'foo', resourceId: '1' }) 
  public processFoo() {}
}

Partial message pattern qualification

By default, the Lambda microservice attempts to qualify the handler methods by performing a full match of the incoming message pattern and the handler pattern. To allow partial pattern matches, one can provide the partialMatch option to the MessagePattern or mark the entire controller to use partial matches using the provided decorator.

@Controller()
export class Controller {
  @MessagePattern({ action: 'foo' }, { partialMatch: true }) // Applies partial match on a specific handler only
  public processFoo() {}
}
@UsePartialPatternMatch() // Applies partial match on all controller handlers
@Controller()
export class Controller {
  @MessagePattern({ action: 'foo' })
  public processFoo() {}
}

Catch-all pattern

When no controller qualifies the message pattern, a lookup for a "catch-all" handler identified by * pattern qualifier is performed. If no such handler is defined, the message is rejected and the Lambda event processing fails.

@Controller()
export class Controller {
  @MessagePattern({ action: 'foo' }) // Qualifies messages with { action: 'foo' } patters 
  public processFoo() {}
  
  @MessagePattern('*') // Qualifies messages with patterns other than { action: 'foo' }
  public processBarBazAndCo() {}
}

Message Processing

The Nest Lambda Microservice supports sync/async Request/Response message style (see more details on the NestJS documentation page).

The two inputs into the Lambda function can be accessed in the NestJS application using the dependency injection:

import { Controller } from '@nestjs/common'
import { Ctx, MessagePattern, Payload } from '@nestjs/microservices'
import { LambdaContext } from '@klarna/lambda-microservice'

@Controller()
export class Controller {
  @MessagePattern('*') 
  public processAnyMessage(
    @Payload() inboundMessage: unknown,
    @Ctx() context: LambdaContext 
  ) {
    console.log(inboundMessage) // The message as mapped from the input lambda event
    console.log(context.getLambdaInvocationContext()) // The Lambda function context object
  }
}

API Gateway Event

The incoming API Gateway Event is mapped to the message pattern using the following logic:

interface ApiGatewayPattern {
  httpMethod: string
  resource: string
  queryStringParameters: Record<string, unknown> | null
  pathParameters: Record<string, unknown> | null
}

The message payload is the original API Gateway event.

For more details see this example.

Custom Request Event

The incoming custom event is any event used to manually invoke the AWS Lambda

type CustomEventPattern = '*'

The message payload is the original payload the Lambda was invoked with.

For more details see this example.

Event Bridge Event

The incoming Event Bridge event is mapped to the message pattern using the following logic:

interface EventBridgePattern {
  source: string
  detailType: string    // The Event Bridge event detail-type
  detail: JSONValue     // The Event Bridge event detail
}

The message payload is the original EventBridge event.

For more details see this example.

S3 Event

The S3 event is mapped using the following logic:

interface S3RecordPattern {
  eventName: string
  bucketName: string
  objectKey: string
}

The message payload is a Record from the original S3 event.

For more details see this example.

SNS Event

The SNS events are mapped using the event attributes

interface SnsRecordPattern {
  [key: string]: string | number
}

The message payload is the SNSMessage.

For more details see this example.

SQS Event

The SQS events are mapped using the event attributes

interface SqsRecordPattern {
  [key: string]: string | number
}

The message payload is a Record from the original SQS event.

For more details see this example.

How to contribute

See our guide on contributing.

Release History

See our changelog.

License

Copyright © 2024 Klarna Bank AB

For license details, see the LICENSE file in the root of this project.