@kevincharm/sparse-merkle-tree
v2.2.0
Published
Sparse Merkle Tree implementation in Solidity with accompanying JS library
Downloads
4
Maintainers
Readme
Sparse Merkle Tree
Sparse Merkle Tree (SMT) implementation in Solidity with accompanying JavaScript library. This SMT implementation uses bytes32(0)
as the empty node value so that paths representing empty subtrees in the Merkle proof may be omitted. This proof compression technique is described by Vitalik in Optimizing sparse Merkle trees.
Installation
yarn add @kevincharm/sparse-merkle-tree @noble/hashes
@noble/hashes
is required as a peer dependency for the JS library.
Onchain usage
Below is an example contract that keeps track of only the current SMT root, and allows updating any leaf with a new value given the old leaf value and the Merkle proof.
import { SparseMerkleTree } from '@kevincharm/sparse-merkle-tree/contracts/SparseMerkleTree.sol';
/// @notice Example SparseMerkleTree consumer
contract SMTConsumer {
/// @notice Depth of Merkle tree
uint16 immutable treeDepth;
/// @notice Current Merkle root
bytes32 public root;
/// @param treeDepth_ The tree depth determines the capacity of the tree,
/// and must not change. `capacity = 2**treeDepth`
constructor(uint16 treeDepth_) {
treeDepth = treeDepth_;
}
function computeRoot(
bytes32 leaf,
uint256 index,
uint256 enables,
bytes32[] calldata path
) public view returns (bytes32) {
return SparseMerkleTree.computeRoot(treeDepth, leaf, index, enables, path);
}
/// @notice Update a leaf in the tree, producing a new root.
/// @param newLeaf New value of leaf
/// @param oldLeaf Current leaf
/// @param index Index of leaf in list; determines hashing direction for
/// proof path elements
/// @param enables Each bit determines whether a proof path element should
/// be used (1) or a zero-value hash (0)
/// @param siblings Proof path; elements only need to be defined for non-zero
/// siblings
function updateRoot(
bytes32 newLeaf,
bytes32 oldLeaf,
uint256 index,
uint256 enables,
bytes32[] calldata siblings
) public returns (bytes32) {
if (root != computeRoot(oldLeaf, index, enables, siblings)) {
revert InvalidProof(oldLeaf, index, enables, siblings);
}
// Replace with new leaf and compute new root
return (root = computeRoot(newLeaf, index, enables, siblings));
}
}
Offchain usage
Below is an example JavaScript snippet that instantiates an SMT, then inserts a new leaf into the SMT, and finally submits the update to a contract using the generated Merkle proofs.
import { SparseMerkleTreeKV } from '@kevincharm/sparse-merkle-tree'
import { ZeroHash, keccak256, concat, hashMessage, Wallet, Contract } from 'ethers'
// Initialise client representation of an empty SMT
const smt = new SparseMerkleTreeKV()
// Insert a new (K,V) entry
const key = keccak256(Wallet.createRandom().address)
const value = hashMessage('Fred Fredburger')
const { newLeaf, leaf: oldLeaf, index, enables, siblings } = smt.insert(key, value)
// Connect to the contract that is consuming the SMT library
const smtConsumer = new Contract(/** ... */)
// We update the SMT onchain by providing:
// - The new value of the leaf
// - The proof of membership of the old leaf value
await smtConsumer.updateRoot(newLeaf, oldLeaf, index, enables, siblings)
// The onchain SMT should now be synced with the client-side
assert((await smtConsumer.root()) === smt.root)
Disclaimer
This software is unaudited and probably contains bugs. Use at your own risk.
License
MIT