@jupyterlab/vega3-extension
v3.3.0
Published
JupyterLab - Vega 3 and Vega-Lite 2 Mime Renderer Extension
Downloads
277
Maintainers
Keywords
Readme
jupyterlab-vega3
A JupyterLab extension for rendering Vega 3 and Vega-Lite 2
Vega 3 is deprecated. The latest version comes by default with JupyterLab. Only use this extension if you have specifications that do not work with the latest version.
Requirements
- JupyterLab >= 3.0
Install
pip install jupyterlab-vega3
Usage
To render Vega-Lite output in IPython:
from IPython.display import display
display({
"application/vnd.vegalite.v2+json": {
"$schema": "https://vega.github.io/schema/vega-lite/v2.json",
"description": "A simple bar chart with embedded data.",
"data": {
"values": [
{"a": "A", "b": 28}, {"a": "B", "b": 55}, {"a": "C", "b": 43},
{"a": "D", "b": 91}, {"a": "E", "b": 81}, {"a": "F", "b": 53},
{"a": "G", "b": 19}, {"a": "H", "b": 87}, {"a": "I", "b": 52}
]
},
"mark": "bar",
"encoding": {
"x": {"field": "a", "type": "ordinal"},
"y": {"field": "b", "type": "quantitative"}
}
}
}, raw=True)
Using the altair library:
import altair as alt
cars = alt.load_dataset('cars')
chart = alt.Chart(cars).mark_point().encode(
x='Horsepower',
y='Miles_per_Gallon',
color='Origin',
)
chart
Provide vega-embed options via metadata:
from IPython.display import display
display({
"application/vnd.vegalite.v2+json": {
"$schema": "https://vega.github.io/schema/vega-lite/v2.json",
"description": "A simple bar chart with embedded data.",
"data": {
"values": [
{"a": "A", "b": 28}, {"a": "B", "b": 55}, {"a": "C", "b": 43},
{"a": "D", "b": 91}, {"a": "E", "b": 81}, {"a": "F", "b": 53},
{"a": "G", "b": 19}, {"a": "H", "b": 87}, {"a": "I", "b": 52}
]
},
"mark": "bar",
"encoding": {
"x": {"field": "a", "type": "ordinal"},
"y": {"field": "b", "type": "quantitative"}
}
}
}, metadata={
"application/vnd.vegalite.v2+json": {
"embed_options": {
"actions": False
}
}
}, raw=True)
Provide vega-embed options via altair:
import altair as alt
alt.renderers.enable('default', embed_options={'actions': False})
cars = alt.load_dataset('cars')
chart = alt.Chart(cars).mark_point().encode(
x='Horsepower',
y='Miles_per_Gallon',
color='Origin',
)
chart
To render a .vl
, .vg
, vl.json
or .vg.json
file, simply open it:
Contributing
Development install
Note: You will need NodeJS to build the extension package.
The jlpm
command is JupyterLab's pinned version of
yarn that is installed with JupyterLab. You may use
yarn
or npm
in lieu of jlpm
below.
# Clone the repo to your local environment
# Change directory to the jupyterlab-vega3 directory
# Install package in development mode
pip install -e .
# Link your development version of the extension with JupyterLab
jupyter labextension develop . --overwrite
# Rebuild extension Typescript source after making changes
jlpm run build
You can watch the source directory and run JupyterLab at the same time in different terminals to watch for changes in the extension's source and automatically rebuild the extension.
# Watch the source directory in one terminal, automatically rebuilding when needed
jlpm run watch
# Run JupyterLab in another terminal
jupyter lab
With the watch command running, every saved change will immediately be built locally and available in your running JupyterLab. Refresh JupyterLab to load the change in your browser (you may need to wait several seconds for the extension to be rebuilt).
By default, the jlpm run build
command generates the source maps for this extension to make it easier to debug using the browser dev tools. To also generate source maps for the JupyterLab core extensions, you can run the following command:
jupyter lab build --minimize=False
Uninstall
pip uninstall jupyterlab-vega3