npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2025 – Pkg Stats / Ryan Hefner

@julusian/epoll

v5.0.0-1

Published

A low-level Node.js binding for the Linux epoll API

Downloads

13

Readme

Build Status npm Version Downloads Per Month

epoll

A low-level Node.js binding for the Linux epoll API for monitoring multiple file descriptors to see if I/O is possible on any of them.

This module was initially written to detect EPOLLPRI events indicating that urgent data is available for reading. EPOLLPRI events are triggered by interrupt generating GPIO pins. The epoll module is used by onoff to detect such interrupts.

epoll supports Node.js versions 10, 12, 14, 16, 18 and 20.

Installation

Note that although it should be possible to install epoll on non-Linux systems the functionality offered by epoll is only available on Linux systems.

npm install epoll

API

  • Epoll(callback) - Constructor. The callback is called when epoll events occur and it gets three arguments (err, fd, events).
  • add(fd, events) - Register file descriptor fd for the event types specified by events.
  • remove(fd) - Deregister file descriptor fd.
  • modify(fd, events) - Change the event types associated with file descriptor fd to those specified by events.
  • close() - Deregisters all file descriptors and free resources.

Event Types

  • Epoll.EPOLLIN
  • Epoll.EPOLLOUT
  • Epoll.EPOLLRDHUP
  • Epoll.EPOLLPRI
  • Epoll.EPOLLERR
  • Epoll.EPOLLHUP
  • Epoll.EPOLLET
  • Epoll.EPOLLONESHOT

Event types can be combined with | when calling add or modify. For example, Epoll.EPOLLPRI | Epoll.EPOLLONESHOT could be passed to add to detect a single GPIO interrupt.

Example - Watching Buttons

The following example shows how epoll can be used to detect interrupts from a momentary push-button connected to GPIO4 (pin P1-7) on the Raspberry Pi. The source code is available in the example directory and can easily be modified for using a different GPIO on the Pi or a different platform such as the BeagleBone.

The first step is to export GPIO4 as an interrupt generating input using the export bash script from the examples directory.

./export

export:

#!/bin/sh
echo 4 > /sys/class/gpio/export
sleep 1
echo in > /sys/class/gpio/gpio4/direction
echo both > /sys/class/gpio/gpio4/edge

Then run watch-button to be notified every time the button is pressed and released. If there is no hardware debounce circuit for the push-button, contact bounce issues are very likely to be visible on the console output. watch-button terminates automatically after 30 seconds.

node watch-button

watch-button:

const Epoll = require('epoll').Epoll;
const fs = require('fs');

const valuefd = fs.openSync('/sys/class/gpio/gpio4/value', 'r');
const buffer = Buffer.alloc(1);

// Create a new Epoll. The callback is the interrupt handler.
const poller = new Epoll((err, fd, events) => {
  // Read GPIO value file. Reading also clears the interrupt.
  fs.readSync(fd, buffer, 0, 1, 0);
  console.log(buffer.toString() === '1' ? 'pressed' : 'released');
});

// Read the GPIO value file before watching to
// prevent an initial unauthentic interrupt.
fs.readSync(valuefd, buffer, 0, 1, 0);

// Start watching for interrupts.
poller.add(valuefd, Epoll.EPOLLPRI);

// Stop watching after 30 seconds.
setTimeout(_ => {
  poller.remove(valuefd).close();
}, 30000);

When watch-button has terminated, GPIO4 can be unexported using the unexport bash script.

./unexport

unexport:

#!/bin/sh
echo 4 > /sys/class/gpio/unexport

Example - Interrupts Per Second

The following example shows how epoll can be used to determine the number of hardware interrupts that can be handled per second on the Raspberry Pi. The source code is available in the example directory and can easily be modified to use different GPIOs on the Raspberry Pi or a different platform such as the BeagleBone.

In this example, GPIO7 is wired to one end of a 1kΩ current limiting resistor and GPIO8 is wired to the other end of the resistor. GPIO7 is an input and GPIO8 is an output.

The first step is to export GPIOs #7 and #8 using the export bash script from the examples directory.

./export

export:

#!/bin/sh
echo 7 > /sys/class/gpio/export
echo 8 > /sys/class/gpio/export
sleep 1
echo in > /sys/class/gpio/gpio7/direction
echo both > /sys/class/gpio/gpio7/edge
echo out > /sys/class/gpio/gpio8/direction

Then run interrupts-per-second. interrupts-per-second toggles the state of the output every time it detects an interrupt on the input. Each toggle will trigger the next interrupt. After five seconds, interrupts-per-second prints the number of interrupts it detected per second.

node interrupts-per-second

interrupts-per-second:

const Epoll = require('../../').Epoll;
const fs = require('fs');

const value = Buffer.alloc(1); // The three Buffers here are global
const zero = Buffer.from('0'); // to improve performance.
const one = Buffer.from('1');

const inputfd = fs.openSync('/sys/class/gpio/gpio7/value', 'r+');
const outputfd = fs.openSync('/sys/class/gpio/gpio8/value', 'r+');

let count = 0;

// Create a new Epoll. The callback is the interrupt handler.
const poller = new Epoll((err, fd, events) => {
  count += 1;

  // Read GPIO value file. Reading also clears the interrupt.
  fs.readSync(inputfd, value, 0, 1, 0);

  // Toggle GPIO value. This will eventually result
  // in the next interrupt being triggered.
  const nextValue = value[0] === zero[0] ? one : zero;
  fs.writeSync(outputfd, nextValue, 0, nextValue.length, 0);
});

let time = process.hrtime(); // Get start time.

// Start watching for interrupts. This will trigger the first interrupt
// as the value file already has data waiting for a read.
poller.add(inputfd, Epoll.EPOLLPRI);

// Print interrupt rate to console after 5 seconds.
setTimeout(_ => {
  time = process.hrtime(time); // Get run time.
  const rate = Math.floor(count / (time[0] + time[1] / 1E9));
  console.log(rate + ' interrupts per second');

  // Stop watching.
  poller.remove(inputfd).close();
}, 5000);

When interrupts-per-second has terminated, GPIOs #7 and #8 can be unexported using the unexport bash script.

./unexport

unexport:

#!/bin/sh
echo 7 > /sys/class/gpio/unexport
echo 8 > /sys/class/gpio/unexport

Here are some results from the "Interrupts Per Second" example.

Raspberry Pi 4 Model B, Raspberry Pi OS (March 4th 2021, Debian 10.8):

node | epoll | kernel | interrupts / sec :---: | :---: | :---: | ---: v16.0.0 | v4.0.1 | 5.10.17-v7l+ | 20112