npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

@jjangga0214/dependency-tree

v8.1.1-pull-135-c9759f9

Published

Get the dependency tree of a module

Downloads

4

Readme

dependency-tree npm npm

Get the dependency tree of a module

npm install --save dependency-tree

  • Works for JS (AMD, CommonJS, ES6 modules), Typescript, and CSS preprocessors (CSS (PostCSS), Sass, Stylus, and Less); basically, any module type supported by Precinct.
    • For CommonJS modules, 3rd party dependencies (npm installed dependencies) are included in the tree by default
    • Dependency path resolutions are handled by filing-cabinet
    • Supports RequireJS and Webpack loaders
  • All core Node modules (assert, path, fs, etc) are removed from the dependency list by default

Usage

var dependencyTree = require('dependency-tree');

// Returns a dependency tree object for the given file
var tree = dependencyTree({
  filename: 'path/to/a/file',
  directory: 'path/to/all/files',
  requireConfig: 'path/to/requirejs/config', // optional
  webpackConfig: 'path/to/webpack/config', // optional
  tsConfig: 'path/to/typescript/config', // optional
  nodeModulesConfig: {
    entry: 'module'
  }, // optional
  filter: path => path.indexOf('node_modules') === -1, // optional
  nonExistent: [], // optional
  noTypeDefinitions: false // optional
});

// Returns a post-order traversal (list form) of the tree with duplicate sub-trees pruned.
// This is useful for bundling source files, because the list gives the concatenation order.
// Note: you can pass the same arguments as you would to dependencyTree()
var list = dependencyTree.toList({
  filename: 'path/to/a/file',
  directory: 'path/to/all/files'
});

Options

  • requireConfig: path to a requirejs config for AMD modules (allows for the result of aliased module paths)
  • webpackConfig: path to a webpack config for aliased modules
  • tsConfig: path to a typescript config (or a preloaded object representing the typescript config)
  • tsConfigPath: a (virtual) path to typescript config file when tsConfig option is given as an object, not a string. Needed to calculate Path Mapping. If not given when tsConfig is an object, Path Mapping is ignored. This is not needed when tsConfig is given as a path string.
  • nodeModulesConfig: config for resolving entry file for node_modules
  • visited: object used for avoiding redundant subtree generations via memoization.
  • nonExistent: array used for storing the list of partial paths that do not exist
  • filter: a function used to determine if a module (and its subtree) should be included in the dependency tree
  • The first argument given to the filter is an absolute filepath to the dependency and the second is the filepath to the currently traversed file. Should return a Boolean. If it returns true, the module is included in the resulting tree.
  • detective: object with configuration specific to detectives used to find dependencies of a file
    • for example detective.amd.skipLazyLoaded: true tells the AMD detective to omit inner requires
    • See precinct's usage docs for the list of module types you can pass options to.
  • noTypeDefinitions: For TypeScript imports, whether to resolve to *.js instead of *.d.ts.

Format Details

The object form is a mapping of the dependency tree to the filesystem – where every key is an absolute filepath and the value is another object/subtree.

Example:

{
  '/Users/mrjoelkemp/Documents/node-dependency-tree/test/example/extended/a.js': {
    '/Users/mrjoelkemp/Documents/node-dependency-tree/test/example/extended/b.js': {
      '/Users/mrjoelkemp/Documents/node-dependency-tree/test/example/extended/d.js': {},
      '/Users/mrjoelkemp/Documents/node-dependency-tree/test/example/extended/e.js': {}
    },
    '/Users/mrjoelkemp/Documents/node-dependency-tree/test/example/extended/c.js': {
      '/Users/mrjoelkemp/Documents/node-dependency-tree/test/example/extended/f.js': {},
      '/Users/mrjoelkemp/Documents/node-dependency-tree/test/example/extended/g.js': {}
    }
  }
}

This structure was chosen to serve as a visual representation of the dependency tree for use in the Dependents plugin.

CLI version
  • Assumes a global install: npm install -g dependency-tree
dependency-tree --directory=path/to/all/supported/files [--list-form] [-c path/to/require/config] [-w path/to/webpack/config] filename

Prints the dependency tree of the given filename as stringified json (by default).

  • You can alternatively print out the list form one element per line using the --list-form option.

How does this work?

Dependency tree takes in a starting file, extracts its declared dependencies via precinct, resolves each of those dependencies to a file on the filesystem via filing-cabinet, then recursively performs those steps until there are no more dependencies to process.

In more detail, the starting file is passed to precinct to extract dependencies. Dependency-tree doesn't care about how to extract dependencies, so it delegates that work to precinct: which is a multi-language dependency extractor; we'll focus on JavaScript tree generation for this example. To do the extraction, precinct delegates the abstract-syntax-tree (AST) generation to the default parser for node-source-walk. Precinct uses the AST to determine what type of JS module the file is (Commonjs, AMD, or ES6) and then delegates to the "detective" that's appropriate for that module type. The "detective" contains the logic for how to extract dependencies based on the module syntax format; i.e., the way dependencies are declared in commonjs is different than in AMD (which has 4 ways of doing that, for example).

After using the detective to get the (raw, like './foobar') dependency strings, precinct passes that back to dependency-tree. Of course, in order to find the dependencies in './foobar', we need to resolve that dependency to a real file on the filesystem. To do this, dependency-tree delegates that task to filing-cabinet: which is a multi-language dependency resolver.

Filing-cabinet reuses (for performance) the AST that precinct made node-source-walk generate. It then does a similar check on the AST to see which module type (commonjs, amd, or es6) is being used in the file (again, we're assuming a regular JS file for this example) and then delegates to the appropriate resolver for that module type. We need different resolvers because a dependency name in AMD could be aliased via a requirejs config. Similarly, commonjs has its own algorithm for resolving dependencies.

So after the appropriate resolver finds the file on the filesystem, filing-cabinet has successfully mapped a raw dependency name to a file on the filesystem. Now, dependency-tree has a file that it can also traverse (repeating exactly what was done for the starting file).

At the end of traversing every file (in a depth-first fashion), we have a fully populated dependency tree. :dancers:

FAQ

Why aren't some some dependencies being detected?

If there are bugs in precinct or if the requireConfig/webpackConfig/tsConfig options are incomplete, some dependencies may not be resolved. The optional array passed to the nonExistent option will be populated with paths that could not be resolved. You can check this array to see where problems might exist.

You can also use the DEBUG=* env variable along with the cli version to see debugging information explaining where resolution went wrong. Example: DEBUG=* dependency-tree -w path/to/webpack.config.json path/to/a/file