npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2025 – Pkg Stats / Ryan Hefner

@jeremyqzt/nodestats

v2.0.1

Published

Helper methods for stats, combinatorics, permutations, probabilities and matricies

Downloads

49

Readme

Node Stats Helpers

Build Status Coverage Status Active Development

This is a library that helps with some common stats operations. We support the following:

  • Combinations
    • Counting number of combinations
    • Getting an array of k-combinations
    • Getting all power sets
  • Permutations
    • Counting number of permutations
    • Getting an array of k-permutations
    • Getting an array of all permutations
  • Statical Calculation
    • Mean, Median, Mode
    • Geometric means
    • Standard deviation (sample or population)
    • Z-Score from mean/standard deviation or input
    • Correlation
  • Z-score table (From -3.99 to 3.99)
  • Simple probability calculations
  • Matrix Operations
    • Determinant
    • Matrix of Minors, Cofactors
    • Matrix Transpose
    • Matrix Inverse
    • Row Canonical Form (Reduced Row Echelon Form)
    • Matrix Rank
    • LU Decomposition
    • QR Decomposition
    • Dot product
    • Arithmetic on every matrix element
    • Deep copying a matrix
    • Random or Identity matrix of a given size

Full Docs can be found at our git pages. Example usages are as followed.

Importing

The libraries can be imported using the following.

const {matrixLib, probabilityLib, statsLib, combinationLib, permutationLib} = require('../index.js');

Matrix Helper

Note that all matrixLib operations work on a duplicated copy of the matrix, the original reference is always maintained.

Adding a constant to every matrix element

Returns a matrix with the each constant C added to each element. In this example, c = 3

t = [[1,2,3], [1,2,3], [1,2,3]]
console.log(matrixLib.addMatrixC(t,3))
//=> [ [ 4, 5, 6 ], [ 4, 5, 6 ], [ 4, 5, 6 ] ]

Subtracting a constant to every matrix element

Returns a matrix with the each constant C subtracted from each element. In this example, c = 3

t = [[1,2,3], [1,2,3], [1,2,3]]
console.log(matrixLib.addMatrixC(t,3))
//=> [ [ -2, -1, 0 ], [ -2, -1, 0 ], [ -2, -1, 0 ] ]

Multiplying a constant to every matrix element

Returns a matrix with the each constant c multiplied to each element. In this example, c = 3

let matTest = [[1.00002,2.31,3,4,5], [-1,-10.4,1,1,5], [7,-8,1,2,8], [9,-1.1231,1,2,3]];
console.log(matrixLib.roundMatrix(matTest))
//=> [ [ 3, 6, 9 ], [ 3, 6, 9 ], [ 3, 6, 9 ] ]

Dividing a constant to every matrix element

Returns a matrix with each element divided by constant c. In this example, c = 3

t = [[3,6,9], [12,15,18], [21,24,27]]
console.log(matrixLib.divideMatrixC(t,3))
//=> [ [ 1, 2, 3 ], [ 4, 5, 6 ], [ 7, 8, 9 ] ]

Getting basic matricies

Get an identity matrix

console.log(matrixLib.getIdentityMatrix(3))
//=> [ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ]

Get an identity matrix, but with extra columns of rows

console.log(matrixLib.getIdentityMatrixRC(4, 3))
//=> [ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ], [ 0, 0, 0 ] ]

Get an matrix of constants (3X2 matrix of constantly 4)

console.log(matrixLib.getMatrix(3, 2, 4))
//=> [ [ 4, 4 ], [ 4, 4 ], [ 4, 4 ] ]

Basic Matrix operations

Comparing 2 matricies

let A = [1,2,3]
console.log(matrixLib.areMatriciesEqual(A, A)
//=> true
console.log(matrixLib.areMatriciesEqual(A, [[1,2],[2,3]])
//=> false

Comparing 2 matricies, with an error tolerance. By default tolerance is 0.1 set it using the third parameter.

let A = [1,2,3]
console.log(matrixLib.areMatriciesApproximatelyEqual(A, A))
//=> true
console.log(matrixLib.areMatriciesApproximatelyEqual(A, [1.09,2.01,3]))
//=> true
console.log(matrixLib.areMatriciesApproximatelyEqual(A, [1.09,2.01,3], 0.05))
//=> false

Duplicating a matrix - leaves original reference intact

let A = [1,2,3]
console.log(matrixLib.duplicateMatrix(A))
//=> [1,2,3]

Get an random matrix (4X3 matrix between -10 and 10, floats allowed)

matrixLib.getRandomMatrix(4, 3, {min:-10, max:10 , intOnly: false}):

Matrix Transpose

console.log(matrixLib.transposeMatrix([1,2,3]));
//=> [ [ 1 ], [ 2 ], [ 3 ] ]

Rounding every matrix element

Rounds each matrix element to a given decimal place, in this case, rounds to first decimal

t = [[1,2,3], [1,2,3], [1,2,3]]
console.log(matrixLib.roundMatrix(matTest, 1))
//=> [
//    [ 1, 2.3, 3, 4, 5 ],
//    [ -1, -10.4, 1, 1, 5 ],
//    [ 7, -8, 1, 2, 8 ],
//    [ 9, -1.1, 1, 2, 3 ]
//   ]

Matrix dot product

Returns a matrix that represents the dot product of the 2 input matricies

t = [
    [1,2,3],
    [4,5,6],
    [7,2,9]
]

t2 = [
    [1,1,1],
    [1,1,1],
    [1,1,1]
]
console.log(matrixLib.multiplyMatrix(t, t2));
//=> [ [ 6, 6, 6 ], [ 15, 15, 15 ], [ 18, 18, 18 ] ]

LU Decomposition

Returns a lower and upper matrix decomposed from the given matrix. Utilizes Crout's method Returns null if the determinant is too close to 0 (No LU available)

let matTest = [[1.00002,2.31,3,4,5], [-1,-10.4,1,1,5], [7,-8,1,2,8], [9,-1.1231,1,2,3]];
console.log(matrixLib.QrDecomposeMatrix(matTest));


//=> {
//     L: [
//       [ -3, 0, 0 ],
//       [ -12, -5.8, 0 ],
//       [ 77, 19.633333333333333, -11.16896551724139 ]
//     ],
//     U: [
//       [ 1, -0.5666666666666667, 3 ],
//       [ 0, 1, -6.1034482758620685 ],
//       [ 0, 0, 1 ]
//     ]
//   }

QR Decomposition

Performs householder's algorithm to QR decompose the matrix. returns a dictionary with { Q: R: Q_x: <Intermediate H matricies, starting from H0...Hx> }

let matTest = [[1.00002,2.31,3,4,5], [-1,-10.4,1,1,5], [7,-8,1,2,8], [9,-1.1231,1,2,3]];
let qrRes = matrixLib.QrDecomposeMatrix(matTest);
console.log(matrixLib.roundMatrix(qrRes.R));
//=> [
//     [ 11, -5, 2, 3, 7 ],
//     [ 0, 13, -0, -0, -6 ],
//     [ -0, 0, 3, 4, 6 ],
//     [ 0, -0, 0, 0, 2 ]
//   ]
console.log(matrixLib.roundMatrix(qrRes.Q));
//=> [
//     [ 0, 0, 1, 0 ],
//     [ -0, -1, 0, -0 ],
//     [ 1, -0, -0, 1 ],
//     [ 1, 0, -0, -1 ]
//   ]
console.log(qrRes.Q_x)
//=> [
//     [ [ 1, 0, 0, 0 ], [ 0, 1, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 0, 0, 1 ] ],
//     [ [ 1, 0, 0, 0 ], [ 0, 1, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 0, 0, 1 ] ]
//   ]

Determinant

Returns the determinant of the matrix

test = [[1,2,3], [4,5,6], [7,2,9]]
console.log(matrixLib.determinantMatrix(test));
//=> -36

Inverse of a matrix

Returns the inverse of the matrix

test = [[1,2,3], [4,5,6], [7,2,9]]
console.log(matrixLib.inverseMatrix(test));
//=> [
//    [ -0.9166666666666666, 0.3333333333333333, 0.08333333333333333 ],  
//    [ -0.16666666666666666, 0.3333333333333333, -0.16666666666666666 ],
//    [ 0.75, -0.3333333333333333, 0.08333333333333333 ]
//   ]

Matrix of Cofactors

Puts the matrix as a matrix of cofactors

let coFactorTest = [[1,2,3, 11],[4,-2,13, -6],[-7, 9,8,7]];
console.log(matrixLib.cofactorMatrix(coFactorTest));
// => [
//      [ 1, -2, 3, -11 ],
//      [ -4, -2, -13, -6 ],
//      [ -7, -9, 8, -7 ]
//    ]

Matrix of Minors

Puts the matrix as a matrix of minors, matrix must be Square.

let coFactorTest = [[1,2,3, 11],[4,-2,13, -6],[-7, 9,8,7]];
console.log(matrixLib.cofactorMatrix(coFactorTest));
// => [
//      [ -133, 123, 22, 22 ],
//      [ -11, 29, 23, 23 ],
//      [ 32, 1, -10, -10 ]
//    ]

Eigenvalues of a matrix

Returns the eigenvalues of a matrix, all eigenvalues appears on the diagonal. In this case, the matrix eigenvalues are 4 and -3.

The second paramter can be used to control the maximum number of QR iteration algorithms cycles. The default is 20.

let mat2 = [[3,2],[3,-2]];
console.log(matrixLib.QReig(mat2));
//=> [
       [ 4.001464871443321, 0 ],
       [ 0, -3.0014648714433183 ]
     ]

console.log(matrixLib.QReig(mat2,2000));
//=> [
       [ 4.000000007324081, 0 ],
       [ 0, -3.000000007324077 ]
     ]

Eigenvectors of a matrix and given eigenvalue

Given a Square matrix and an approximate eigenvalue. A corresponding eigenvector is returned. The initial eigenvalue must be different than the actual eigenvalue - otherwise it may return NaN or Inifinty

This is based off of the inverse iteration algorithm.

In the following example, the eigenvalues are 4,-3 (as found previously). 2 is passed in as the initial eigenvalue.

The initial eigenvector is null (a random eigenvector is generated). By default - the iteration tolerance is 0, a maximum of 200 cycles is perofmed.

let mat2 = [[3,2],[3,-2]];
console.log(matrixLib.matrixEigenVector(mat2, 2));
// => [ [ 2 ], [ 1 ] ]

In the following example, the eigenvalues are 4,-3 (as found previously). -22 is passed in as the initial eigenvalue and [[-10],[-2]] is the initial eigenvector guess.

The algorithm parameters are 2000 cycles maximum or 0 change between each successive iterations

let mat2 = [[3,2],[3,-2]];
console.log(matrixLib.matrixEigenVector(mat2, -22, [[-10],[-2]], {tol = 0, iter=2000}));
// => [ [ -0.33333333333333337 ], [ 1 ] ]

Row Canonical Form and Rank

Puts the matrix in row canonical form (Reduced Row Echelon Form).

let rankTest = [[1,2,3, 11],[4,-2,13, -6],[-7, 9,8,7]];
console.log(matrixLib.rowCanonicalMatrix(rankTest));
// => [
//     [ 1, 0, 0, 4.169329073482428 ],
//     [ 0, 1, 0, 4.900958466453674 ],
//     [ 0, 0, 1, -0.9904153354632588 ]
//    ]

Finds the rank of the matrix

console.log(matrixLib.rankOfMatrix(rankTest));
// => 3

Combination Helper

Counting number of combinations

Returns the number of pemutations of the given input. The following is 5 choose 3 (5C3) and 10 choose 7 (10C7).

console.log(combinationLib.countCombinations(5,3))
//=> 10
console.log(combinationLib.countCombinations(10,7))
//=> 120

Getting the combinations

Returns the combinations of the given input. This utilizes the Forward-Backward Algorithm for generating combinations.

console.log(combinationLib.combinations([1,2,3,4,5,6,7,8,9,10],7))
//=> [ Set { 1, 2, 3, 4, 5, 6, 7 },
//     Set { 1, 2, 3, 4, 5, 6, 8 },
//     Set { 1, 2, 3, 4, 5, 6, 9 },
//     Set { 1, 2, 3, 4, 5, 6, 10 },
//     Set { 1, 2, 3, 4, 5, 7, 8 },
//     Set { 1, 2, 3, 4, 5, 7, 9 },
//     ...119 more
console.log(combinationLib.combinations([1,2,3,4,5,6,7,8,9,10],7).length)
//=> 120

Counting number of power sets

Returns the number of combinations of the given input.

console.log(combinationLib.countPowerSet(6));
//=> 64

Getting the power sets

Returns the powersets of the given input.

console.log(combinationLib.powerSet([1,2,3,4,5]));
//=> [ Set {},
//     Set { 1 },
//     Set { 2 },
//     Set { 1, 2 }, 
//     Set { 3 }, 
//     Set { 1, 3 }, 
//     ...26 more

Permutation Helper

Factorials

Returns the evaluated factorial of the given input.

console.log(permutationLib.factorial(5));
//=> 120

Counting number of permutations

Returns the number of pemutations of the given input. The following is 5P5.

console.log(permutationLib.countPermutation(5,5))
//=> 120
console.log(permutationLib.countPermutation(5,1))
//=> 5

Getting the permutations

Returns the pemutations of the given input. This utilizes Heap's Algorithm for generating permutations.

console.log(permutationLib.permutation([1,2,3]))
//=> [ [ 1, 2, 3 ],
//     [ 2, 1, 3 ],
//     [ 3, 1, 2 ],
//     [ 1, 3, 2 ],
//     [ 2, 3, 1 ],
//     [ 3, 2, 1 ]
//   ]

Getting N permutations

Returns the N pemutations of the given input. This utilizes a recursive algorithm to generate all permutations of a given length. The Following is 3-length permutations of 5 (5P3).

console.log(permutationLib.kPermutations([1,2,3,4,5], 3))
//=> [ [ 1, 2, 3 ],
//     [ 1, 2, 4 ],
//     [ 1, 2, 5 ],
//     [ 1, 3, 2 ],
//     [ 1, 3, 4 ],
//     [ 1, 3, 5 ],
//     ...54 more
console.log(permutationLib.nPermutations([1,2,3,4,5], 3).length)
//=> 60

Probability Helper

P(X and Y)

Probability of X and Y occuring (Assuming X and Y are independent).

console.log(probabilityLib.XandY(0.5, 0.3))
//=> 0.15

P(X or Y)

Probability of X or Y occuring (Assuming X and Y are independent).

console.log(probabilityLib.XorY(0.5, 0.3))
//=> 0.65

P(X and ~Y)

Probability of X and NOT Y occuring (Assuming X and Y are independent).

console.log(probabilityLib.XandNotY(0.5, 0.3))
//=> 0.35

P(X | Y)

Probability of X occuring given that Y occured (Assuming X and Y are independent).

console.log(probabilityLib.XgivenY(0.5, 0.3))
//=> 0.5

P(X | ~Y)

Probability of X occuring given that Y DID NOT occured (Assuming X and Y are independent).

console.log(probabilityLib.XgivenNotY(0.5, 0.3))
//=> 0.5

Stats Helper

Sum of array

Returns a value representing the sum of the input array. Returns 0 if input is invalid.

console.log(statsLib.sum([1,2,3,4,5]));
//=> 15

Geometric sum of array

Returns a value representing the factorial of the input array. Returns 0 if input is invalid.

console.log(statsLib.geometricSum([1,2,3,4,5]));
//=> 120

Mean of array

Returns a value representing the factorial of the input array. Returns undefined if input is invalid.

console.log(statsLib.mean([1,2,3,4,5]));
//=> 3

Geometric mean of array

Returns a value representing the geometric mean of the input array. Returns undefined if input is invalid.

console.log(statsLib.geometricMean([1,2,3,4,5]));
//=> 2.605171084697352

Median of array

Returns a value representing the geometric mean of the input array. Returns NaN if input is invalid.

console.log(statsLib.median([1,2,3,4,5]));
//=> 3
console.log(statsLib.median([5,3,1,4,2,3,4,5]));
//=> 3.5

Mode of array

Returns a value representing the mode of the input array.

console.log(statsLib.mode([1,2,3,4,5]));
//=> [ 1, 2, 3, 4, 5 ]
console.log(statsLib.mode([5,3,1,4,2,3,4,5]));
//=> [ 3, 4, 5 ]
console.log(statsLib.mode([5,3,1,4,2,3,4,5,7,7,7]));
//=> [ 7 ]

Standard deviation of array

Returns a value representing the standard deviation of the input array. Assumes the input array is the population unless otherwise specified. Returns NaN if input is invalid.

console.log(statsLib.stdev([5,3,1,4,2,3,4,5,7,7,7], opt = {"population": true}));
//=> 1.966664332071267
console.log(statsLib.stdev([5,3,1,4,2,3,4,5,7,7,7], opt = {"population": false}));
//=> 2.062654952856986

Absolute percentile of array

Returns a value representing the given percentile of the input array. The following example gives the 80th percentile value - which is 5.

console.log(statsLib.absolutePercentile(80, [5,3,1,4,2,3,4,5,7,7,7]));
//=> 5

Z-score of an value, mean and standard deviation

Returns a value representing the percentile of a value and a given input. Value does not have to be in the input, a Z-score calculation and lookup occurs. Returns undefined if input is not a number.

console.log(statsLib.percentileFromMeanAndStdev(5, 5.5, 3));
//=> 0.43251
console.log(statsLib.percentileFromMeanAndStdev(5, 22, 1.3));
//=> 0.00003

Z-score of a value and array

Returns a value representing the Z-score of the input array.

console.log(statsLib.zScore(7, [5,3,1,4,2,3,4,5,7,7,7]));
//=> 1.3405254742109705
console.log(statsLib.zScore(10, [5,3,1,4,2,3,4,5,7,7,7]));
//=> 2.8659510138303506

Percentile given value and input array

Returns a value representing the Z-score of the mean and standard deviaiton. Returns undefined if input is not a number.

console.log(statsLib.percentile(13, [1,2,3,4,5,6,7,8,9,10], opt={"population": false}));
//=> 0.99343
console.log(statsLib.percentile(5, [1,2,3,4,5,6,7,8,9,10], opt={"population": true}));
//=> 0.43251
console.log(statsLib.percentile(5.5, [1,2,3,4,5,6,7,8,9,10], opt={"population": true}));
//=> 0.5

Z-score percentile

Returns a value representing the percentile of a given Z-score. Returns undefined if input is not a number.

console.log(statsLib.zScorePercentile(3.99));
//=> 0.99997
console.log(statsLib.zScorePercentile(-2.1));
//=> 0.01786

Correlations

Returns a value representing the correlatio between 2 arrays

console.log(statsLib.correlation([1,2,3,4,5], [1,2,3,4,5]))
//=> 1
console.log(statsLib.correlation([1,2,3,4,5], [-1,-2,-3,-4,-5]))
//=> -1
console.log(statsLib.correlation([1,4,9,5,3], [-1,-2,-3,-4,-5]))
//=> -0.266500895444513