@jasongodev/workercom
v1.0.10
Published
workercom makes WebWorkers enjoyable. A library derived from comlink
Downloads
3
Readme
Workercom
Workercom makes WebWorkers enjoyable. Workercom is a tiny library (1.1kB), that removes the mental barrier of thinking about postMessage
and hides the fact that you are working with workers. Rewritten and improved communication issues from Comlink
At a more abstract level it is an RPC implementation for postMessage
and ES6 Proxies.
$ yarn add workercom
Notable difference with Comlink
- Remove unnecessary
Comlink.proxy
function (Workercom will find functions, transfering and hydrate them) - Allows callbacks to be nested within objects
- Allows the proto object to refer back to itself
- Default conversion support for
function
,class
,Error
family,TypedArray
family and OTHER
Browsers support & bundle size
Browsers without ES6 Proxy support can use the proxy-polyfill.
Size: ~2.5k, ~1.2k gzip’d, ~1.1k brotli’d
Introduction
On mobile phones, and especially on low-end mobile phones, it is important to keep the main thread as idle as possible so it can respond to user interactions quickly and provide a jank-free experience. The UI thread ought to be for UI work only. WebWorkers are a web API that allow you to run code in a separate thread. To communicate with another thread, WebWorkers offer the postMessage
API. You can send JavaScript objects as messages using myWorker.postMessage(someObject)
, triggering a message
event inside the worker.
Workercom turns this messaged-based API into a something more developer-friendly by providing an RPC implementation: Values from one thread can be used within the other thread (and vice versa) just like local values.
Examples
main.js
import { wrap } from "workercom";
import Worker from "worker-loader!./worker.js";
async function init() {
const worker = new Worker();
// WebWorkers use `postMessage` and therefore work with Workercom.
const obj = wrap(worker);
alert(`Counter: ${await obj.counter}`);
await obj.inc();
alert(`Counter: ${await obj.counter}`);
}
init();
worker.js
import { expose } from "workercom";
const obj = {
counter: 0,
inc() {
this.counter++;
},
};
expose(obj);
Callbacks
main.js
import { wrap } from "workercom";
import Worker from "worker-loader!./worker.js";
async function init() {
const remoteFunction = wrap(new Worker());
await remoteFunction(callback(value) {
alert(`Result: ${value}`);
});
}
init();
worker.js
import { expose } from "workercom";
async function remoteFunction(cb) {
await cb("A string from a worker");
}
expose(remoteFunction);
SharedWorker
When using Workercom with a SharedWorker
you have to:
- Use the
port
property, of theSharedWorker
instance, when callingWorkercom.wrap
. - Call
Workercom.expose
within theonconnect
callback of the shared worker.
Pro tip: You can access DevTools for any shared worker currently running in Chrome by going to: chrome://inspect/#workers
main.js
import { wrap } from "workercom";
import SharedWorker from "worker-loader?worker=SharedWorker!./worker.js";
async function init() {
const worker = new SharedWorker();
/**
* SharedWorkers communicate via the `postMessage` function in their `port` property.
* Therefore you must use the SharedWorker's `port` property when calling `Workercom.wrap`.
*/
const obj = wrap(worker.port);
alert(`Counter: ${await obj.counter}`);
await obj.inc();
alert(`Counter: ${await obj.counter}`);
}
init();
worker.js
import { expose } from "workercom";
const obj = {
counter: 0,
inc() {
this.counter++;
},
};
/**
* When a connection is made into this shared worker, expose `obj`
* via the connection `port`.
*/
onconnect = function (event) {
const port = event.ports[0];
expose(obj, port);
};
// Single line alternative:
// onconnect = (e) => expose(obj, e.ports[0]);
API
Workercom.wrap(endpoint)
and Workercom.expose(value, endpoint?)
Workercom’s goal is to make exposed values from one thread available in the other. expose
exposes value
on endpoint
, where endpoint
is a postMessage
-like interface.
wrap
wraps the other end of the message channel and returns a proxy. The proxy will have all properties and functions of the exposed value, but access and invocations are inherently asynchronous. This means that a function that returns a number will now return a promise for a number. As a rule of thumb: If you are using the proxy, put await
in front of it. Exceptions will be caught and re-thrown on the other side.
Workercom.installTransfer(name, transferables)
& Comlink.proxy
By default, every function parameter, return value and object property value is copied, in the sense of structured cloning. Structured cloning can be thought of as deep copying, but has some limitations. See this table for details.
If you want a value to be transferred rather than copied — provided the value is or contains a Transferable
— you can wrap the value in a installTransfer()
call and provide a list of transferable values:
import { installTransfer } from "workercom";
installTransfer<ArrayBuffer, string>("arraybuffer", {
canHandle: (value) => value instanceof ArrayBuffer,
serialize: (value) => [_arrayBufferToBase64(value), []],
deserialize: ({ raw }) => _base64ToArrayBuffer(raw),
});
Removed Comlink.proxy()
. This will happen automatically
// myProxy.onready = Comlink.proxy((data) => {
// /* ... */
// });
// * And now
myProxy.onready = (data) => {
/* ... */
}
See more default transfer
Transfer handlers and event listeners
It is common that you want to use Workercom to add an event listener, where the event source is on another thread:
button.addEventListener("click", myProxy.onClick.bind(myProxy));
While this won’t throw immediately, onClick
will never actually be called. This is because Event
is neither structured cloneable nor transferable. As a workaround, Workercom offers transfer handlers.
Each function parameter and return value is given to all registered transfer handlers. If one of the event handler signals that it can process the value by returning true
from canHandle()
, it is now responsible for serializing the value to structured cloneable data and for deserializing the value. A transfer handler has be set up on both sides of the message channel. Here’s an example transfer handler for events:
installTransfer<Event, {
target: {
id: string;
classList: string[]
}
}>("EVENT", {
canHandle: (obj) => obj instanceof Event,
serialize: (ev) => {
return [
{
target: {
id: ev.target.id,
classList: [...ev.target.classList],
},
},
[],
];
},
deserialize: (obj) => obj,
});
Note that this particular transfer handler won’t create an actual Event
, but just an object that has the event.target.id
and event.target.classList
property. Often, this is enough. If not, the transfer handler can be easily augmented to provide all necessary data.
Default conversion support for function
, class
, Error
family, TypedArray
family
Workercom.releaseProxy
Every proxy created by Workercom has the [releaseProxy]
method.
Calling it will detach the proxy and the exposed object from the message channel, allowing both ends to be garbage collected.
const proxy = wrap(port);
// ... use the proxy ...
proxy[releaseProxy]();
Workercom.createEndpoint
Every proxy created by Workercom has the [createEndpoint]
method.
Calling it will return a new MessagePort
, that has been hooked up to the same object as the proxy that [createEndpoint]
has been called on.
const port = myProxy[createEndpoint]();
const newProxy = wrap(port);
Workercom.windowEndpoint(window, context = self, targetOrigin = "*")
Windows and Web Workers have a slightly different variants of postMessage
. If you want to use Workercom to communicate with an iframe or another window, you need to wrap it with windowEndpoint()
.
window
is the window that should be communicate with. context
is the EventTarget
on which messages from the window
can be received (often self
). targetOrigin
is passed through to postMessage
and allows to filter messages by origin. For details, see the documentation for Window.postMessage
.
For a usage example, take a look at the non-worker examples in the docs
folder.
TypeScript
Workercom does provide TypeScript types. When you expose()
something of type T
, the corresponding wrap()
call will return something of type Workercom.Remote<T>
. While this type has been battle-tested over some time now, it is implemented on a best-effort basis. There are some nuances that are incredibly hard if not impossible to encode correctly in TypeScript’s type system. It may sometimes be necessary to force a certain type using as unknown as <type>
.
Node
Workercom works with Node’s worker_threads
module.
License MIT