npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

@iohk/mallet

v2.1.0

Published

IELE/KEVM testnet CLI tool

Downloads

3

Readme

Mallet

Mallet, the minimum wallet, is a command line utility for deploying smart contracts and interacting with the Cardano IELE and KEVM testnets developed by IOHK. Mallet is written in Javascript and is based on the Node.js REPL, so it gives access to some handy functions as well as libraries such as Web3. Mallet can also be included as a library in your own JavaScript programs.

Installing

Mallet requires Node.js version 10.4.0 or later. There are more detailed instructions for installing Node.js and Mallet in two places.

First, there are pages on installing Node.js and Mallet along with a tutorial.

Second, there is a video, Getting Started with Mallet.

Once you have Node.js installed, run:

$ npm install -g --engine-strict @iohk/mallet

This will download and install all the dependencies. The --engine-strict flag makes sure you have the required version of Node installed.

Running the command line interface

Type the following to see Mallet's usage help:

$ mallet --help

Running Mallet with proper arguments will open a Node.js REPL session with the Mallet commands available.

mallet iele

Everything has to be valid JavaScript:

mallet> 1 + 1
2
mallet> const x = _
undefined
mallet> x
2
mallet> x = 3
TypeError: Assignment to constant variable.
mallet> help
[Function: help]
mallet> help()
undefined

Caveats

  • Mallet is a command line tool to be run on Node.js. Although it may be possible to import Mallet into a browser, this has not been tested and is not officially supported.
  • Mallet takes advantage of BigInt arbitrary-precision integers, which were added to the V8 Javascript engine in May 2018.
  • To meet the requirements of an interactive shell environment, all Mallet's functions are synchronous.
  • Because of an issue with the embeddable Node.js REPL, an augmented version of rlp.js has been put in the lib folder

Mallet commands

Technically speaking, the ‘commands’ discussed here are actually functions and properties of a Mallet object. We refer to them as commands because that reflects how Mallet is used.

Getting help

When running Mallet, these commands may be useful.

help

Opens the README file you are reading in your default browser:

mallet> help()
undefined

listCommands

Lists the available commands:

mallet> listCommands()
[ 'currentAccount',
  'getBalance',
  'getNonce',
  'getReceipt',
  'help',
  'iele.contractCall',
  'iele.createContract',
  'iele.simpleTransfer',
  'importPrivateKey',
  'lastTransaction',
  'listAccounts',
  'listCommands',
  'newAccount',
  'requestFunds',
  'selectAccount',
  'sendTransaction',
  'web3' ]

Account management

These management commands operate on the local keystore and do not connect to a testnet.

newAccount

Creates a random key pair for a new managed account. The private key is stored in the datadir that is encrypted with the provided password. The command returns the corresponding account’s address.

mallet> newAccount()
Enter password:
Repeat password:
'0x8cc7c261b5dda47755ac9629ec32bba0ab4d1d32'

importPrivateKey

Imports a known private key as a managed account. The private key is stored in the datadir that is encrypted with the provided password. This import command returns the corresponding account’s address.

mallet> importPrivateKey()
Enter private key:
Enter password:
Repeat password:
'0xb0ff13c14e071b11ab678524ae28e6eb248de96a'

listAccounts

Lists the addresses of all managed accounts:

mallet> listAccounts()
[ '0xfc7e805d72ca57aff872cd010a4c9c5e8e8f22f2',
  '0xd7f3583b8805cfbe0979050f5a1b3587a8fee900',
  '0x724e5991252860ca530542719b25b39b1b437a1c',
  '0x60950641e7382a120c8825464391da3b84db2a86',
  '0xb0ff13c14e071b11ab678524ae28e6eb248de96a' ]

selectAccount

Selects an account for commands such as sendTransaction, getBalance, requestFunds:

mallet> selectAccount('0xfc7e805d72ca57aff872cd010a4c9c5e8e8f22f2')
'0xfc7e805d72ca57aff872cd010a4c9c5e8e8f22f2'

currentAccount

mallet> currentAccount()
'0xfc7e805d72ca57aff872cd010a4c9c5e8e8f22f2'

Interacting with the testnet

The following commands interact with nodes on Mantis, the Ethereum client, via the JSON remote procedure call (RPC) protocol (using the Web3 library).

getBalance

Show the balance of an account:

mallet> currentAccount()
'0xfc7e805d72ca57aff872cd010a4c9c5e8e8f22f2'
mallet> getBalance()
'98474579999999000'
mallet> getBalance('0x60950641e7382a120c8825464391da3b84db2a86')
'1000'

sendTransaction

Sends a transaction signed with the selected account’s key and returns the transaction hash. This command requires a password to decrypt the private key.

mallet> tx = {
    to: '0x60950641e7382a120c8825464391da3b84db2a86', // recipient's address, optional, new contract created if not provided
    gas: 100000,                                      // gas limit, mandatory
    gasPrice: 5000000000,                             // gasPrice, optional, default: 5 Gwei
    value: 1000000,                                   // optional, default: 0
    data: '0xcafebabe'                                // optional, default: empty
}
mallet> sendTransaction(tx)

getReceipt

Obtains a receipt of a transaction with a given hash. If a hash is not provided, the hash of the most recent transaction will be used.

mallet> sendTransaction(tx)
Enter password:
'0xc71a634009c85640996d64124cf35c3748009c45c952ed456ff5c239ccd5b1d3'
mallet> getReceipt()
null
mallet> getReceipt()
{ transactionHash:
   '0xc71a634009c85640996d64124cf35c3748009c45c952ed456ff5c239ccd5b1d3',
  transactionIndex: 0,
  blockNumber: 295346,
  blockHash:
   '0x007643f3198296fe6e1b3f125ec603aa758d813cb9ae2c7a2a06daf5357d30bc',
  cumulativeGasUsed: 21272,
  gasUsed: 21272,
  contractAddress: null,
  logs: [],
  statusCode: '0x00',
  status: true,
  returnData: [],
  rawReturnData: '0xc0' }
mallet> getReceipt('0x00039c02c1ca8cb2b25226f74887fc0afcf485797de65afbc105dab13497ba57')
{ transactionHash:
   '0x00039c02c1ca8cb2b25226f74887fc0afcf485797de65afbc105dab13497ba57',
  transactionIndex: 0,
  blockNumber: 295367,
  ...  

Note that the receipt may not be readily available, indicated with null value, because it takes time for a transaction to be forged.

If the receipt is for a IELE transaction (technically if it has statusCode field and the return data is RLP-decodable) then returnData field contains an array of integers, and raw undecoded data (hex string) is available in rawReturnData.

requestFunds

This command is different, in that it doesn't interact with the JSON RPC. Instead, it calls the testnet Faucet to obtain funds for a given account. It returns the transaction hash.

mallet> currentAccount()
'0xfc7e805d72ca57aff872cd010a4c9c5e8e8f22f2'
mallet> getBalance()
'972415314998966999'
mallet> requestFunds()
'0x1fc10c0ae70b09fb89fbc39d827c301d05ed0f196f3c54f3c52c4e683b89ff27'
mallet> getBalance()
'1002415314998966999'
mallet> requestFunds('0xd7f3583b8805cfbe0979050f5a1b3587a8fee900')
'0x03c485c980faf11c89d74c92a8d26efda7860edbb7de4a689220e33180a82e6c'
mallet> requestFunds('0xd7f3583b8805cfbe0979050f5a1b3587a8fee900')
Thrown: Faucet error: The user has sent too many requests in a given amount of time.

IELE commands

The following commands are variations of sendTransaction. They ensure that data is properly encoded for the IELE virtual machine. The argument transaction object is the same as in the case of sendTransaction, except for the data field.

iele.simpleTransfer

This transfers value between accounts Technically, this calls the deposit function of the IELE virtual machine on the recipient's account.

mallet> getBalance('0xd7f3583b8805cfbe0979050f5a1b3587a8fee900')
'0'
mallet> iele.simpleTransfer({to: '0xd7f3583b8805cfbe0979050f5a1b3587a8fee900', gas: 100000, value: 1000})
Enter password:
'0x1a0ef8a980851ade10f76bcb4b21cd2ad79e13d0b181419a7785ac620fbd2b82'
mallet> getBalance('0xd7f3583b8805cfbe0979050f5a1b3587a8fee900')
'1000'

iele.deployContract

Creates a contract with the bytecode provided in the code field, with optional constructor arguments as args – an array of integers.

mallet> let code = '00000091630369000F696E6372656D656E745828696E742969000667657458282967000000006600003400650002006180016101025511660001F60000660002620101F7016800010001660000340165000201610102541301001C6101025514660001F60000660002620102F7026800020000660000340065000200610101540A6013640001660001F6000103660002620101F701'
undefined
mallet> iele.deployContract({gas: 1000000, value: 0, code: code, args: []})
Enter password:
'0xb13e7783c86dda3f880b2d875201a1d4c4f7f0ae5b085e320dc32a7688ce394d'
mallet> getReceipt()
{ transactionHash:
   '0xb13e7783c86dda3f880b2d875201a1d4c4f7f0ae5b085e320dc32a7688ce394d',
  transactionIndex: 0,
  blockNumber: 36577,
  blockHash:
   '0x4d65719d5be6ce74ea02f8a59461bde8b831ae02ad72c127e9004b29a394f4c6',
  cumulativeGasUsed: 60730,
  gasUsed: 60730,
  contractAddress: '0x79c7f680aa944545744f611a1a9770426903cee9',
  logs: [],
  status: '0x00',
  returnData: '0xd59479c7f680aa944545744f611a1a9770426903cee9' }

iele.callContract

Calls function func of a contract at the to address. As with the previous command, there are optional arguments, args, as an array of integers.

mallet> iele.callContract({to: '0x79c7f680aa944545744f611a1a9770426903cee9', gas: 1000000, func: 'getX()', args: []})
Enter password:
'0x767f44039fbb67503a18688c38576fe0396dc55e18d057b7bef86d9a62fffb57'
mallet> getReceipt()
{ transactionHash:
   '0x767f44039fbb67503a18688c38576fe0396dc55e18d057b7bef86d9a62fffb57',
  transactionIndex: 0,
  blockNumber: 36663,
  blockHash:
   '0x20d1063fad4453e15f74962ba8d9bc009b4827ca3df6b7dd130a8723f8bb6ebf',
  cumulativeGasUsed: 21838,
  gasUsed: 21838,
  contractAddress: null,
  logs: [],
  statusCode: '0x00',
  status: true,
  returnData: [ 0n ],
  returnData: '0xc100' }
mallet> iele.callContract({to: '0x79c7f680aa944545744f611a1a9770426903cee9', gas: 1000000, func: 'incrementX(int)', args: [13]})
Enter password:
'0x9592150326c811ad71e55a007b589763c6dbd6365eae2cb66f6532ca780b0799'
mallet> getReceipt()
null
mallet> getReceipt()
{ transactionHash:
   '0x9592150326c811ad71e55a007b589763c6dbd6365eae2cb66f6532ca780b0799',
  transactionIndex: 0,
  blockNumber: 36670,
  blockHash:
   '0x7daf8a59044c66a1d320043287837b3d1f7d78e2b462e8dc218487cae6d80349',
  cumulativeGasUsed: 28263,
  gasUsed: 28263,
  contractAddress: null,
  logs: [],
  statusCode: '0x00',
  status: true,
  returnData: [],
  rawReturnData: '0xc0' }

iele.constantCall

This command is equivalent to web3.eth.call except with IELE-specific data encoding. It can be used for calling contract functions that do not change the state (Solidity's view functions). No account has to be selected to run this command. The TX argument is the same as for iele.callContract. The command returns decoded array of integers comprising the function return data.

mallet> iele.constantCall({to: '0x79c7f680aa944545744f611a1a9770426903cee9', gas: 1000000, func: 'getX()', args: []})
[ 0n ]

Note on IELE function names

Solidity functions compiled to IELE have a naming convention that includes function the original function name along with its argument types (this is to support function overloading). Examples

| Solidity function header | IELE function name | |--------------------------|--------------------| | function getX() returns (int) | getX() | | function incrementX(int i) | incrementX(int)| | function somethingComplex(address a, bytes b, int[] i) returns (string, int) | somethingComplex(address,bytes,int[])|

Note on type encoding

IELE functions by design accept and return array of unbounded integers. To encode/decode different Solidity to/from integers use iele.enc/iele.dec. Both functions take a value to be converted and a Solidity type as a string. Consider a Solidity function like this:

function dummyFunc(address a, bytes b, int[] i) public pure returns (string, int) {
    return ("I'm a dummy", i[0]);
}

Here's how you can use iele.enc and iele.dec:

mallet> contractAddress = '0x9785367f32a97ec34090307368a4368f2ab4bc01'
'0x9785367f32a97ec34090307368a4368f2ab4bc01'
mallet> args = [iele.enc(contractAddress, 'address'), iele.enc('0xcafebabe', 'bytes'), iele.enc([42, -1], 'int[]')]
[ 865028352852446724060954038272434378925942291457n,
  4222355708056220710451082685618494097063946n,
  1455792646560079078679811948732730198604464062977n ]
mallet> result = iele.constantCall({to: contractAddress, gas: 1000000, func: 'dummyFunc(address,bytes,int[])', args: args})
[ 1631388912461674177904633800030782296862752779n, 42n ]
mallet> iele.dec(result[0], 'string')
'I\'m a dummy'
mallet> iele.dec(result[1], 'int')
42

Compiling contracts

Compiling contracts is currently only supported for IELE, and only for a single source file. Both IELE assembly language and Solidity (using a Solidity-to-IELE compiler) contracts can be compiled. Both compilers are services of the testnet that Mallet connects to (there are no additional dependencies).

iele.compile

Sends the source code from the provided file path to the compiler. The mode of compilation is determined by the extension of the source file:

  • .sol: two-step compilation: Solidity to IELE and then to IELE assembly
  • .iele: direct to IELE assembly
mallet> iele.compile('test/contracts/sendEther.sol')
{ source:   '// Simple contract ...'
  solidityCompilerOutput: 'Warning: This is a pre-release compiler version...',
  error: false,
  ieleCode: 'contract "main.sol:test" ...',
  bytecode: '000000AA630469000F612...' }

The compiled contract is available in the bytecode property, which can then be used as an argument to iele.createContract. In the case of a compilation failure, the error property will be set to true and the relevant compiler output can be found in solidityCompilerOutput.

With direct IELE assembly compilation, the compiler interface is simpler:

mallet> iele.compile('test/contracts/sendEther.iele')
{ source: 'contract "sendEther" {\n\ndefine @init() ...',
  result: '000000AA630469000...' }

The result property will contain either the correctly compiled bytecode, or textual error information.

Importing as library

To use Mallet as library add:

const Mallet = require('@iohk/mallet');

in your script. See test/basic-kevm.js for an example of using Mallet in a script.

Need more help?

As mentioned before, the IELE testnet pages have detailed instructions and a rather good video:

  • Installing Node.js and Mallet, plus a tutorial from: https://testnet.iohkdev.io/iele/

  • Getting Started with Mallet video: https://www.youtube.com/watch?v=Tp4Z0RbjSa8

  • The Mallet repository is here: https://github.com/input-output-hk/mallet

  • IOHK provides support on using IELE and the testnet. Details at: https://testnet.iohkdev.io/iele/resources/support-and-help/