npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

@hotmeshio/hotmesh

v0.3.15

Published

Unbreakable Workflows

Downloads

1,336

Readme

HotMesh

beta release

HotMesh offers the power of Temporal.io as a serverless swarm. It's backed by Postgres or Redis (your choice), and there's no need for a central server! Just install the package and start orchestrating your microservices.

Features

  • Temporal Your Way: Orchestrate your microservices without the need for a central server. Just point to your Postgres or Redis instance.
  • Pluggable Middleware: Mix and match technologies through a standard interface. Currently supporting Redis/ValKey/Dragonfly/KVRocks and Postgres.
  • Decentralized Orchestration: Centralized data with decentralized execution.
  • Linear Scalability: Scale your database to scale your application.
  • Real-Time Analytics: Gain process insights with real-time analytics.

Install

npm install @hotmeshio/hotmesh

Learn

📄 Docs | 💼 Sample Projects | 🎥 Intro (3m) | 🎥 Transactional Workflow (9m)

MeshCall | Connect Your Services

MeshCall connects your services as a singular mesh, exposing functions as idempotent endpoints. Function responses are cacheable and functions can even run as idempotent cron jobs. Make blazing fast interservice calls that return in milliseconds without the overhead of HTTP.

Run a Cron

This example demonstrates an idempotent cron that runs daily at midnight. The id makes each cron job unique and ensures that only one instance runs, despite repeated invocations. The cron method returns false if a workflow is already running with the same id.

Optionally set a delay and/or set maxCycles to limit the number of cycles. The interval can be any human-readable time format (e.g., 1 day, 2 hours, 30 minutes, etc) or a standard cron expression.

  1. Define the cron function.

    //cron.ts
    import { MeshCall } from '@hotmeshio/hotmesh';
    import * as Redis from 'redis';
    
    export const runMyCron = async (id: string, interval = '0 0 * * *'): Promise<boolean> => {
      return await MeshCall.cron({
        topic: 'my.cron.function',
        connection: {
          class: Redis,
          options: { url: 'redis://:key_admin@redis:6379' }
        },
        callback: async () => {
          //your code here...
        },
        options: { id, interval, maxCycles: 24 }
      });
    };
  2. Call runMyCron at server startup (or call as needed to run multiple crons).

    //server.ts
    import { runMyCron } from './cron';
    
    runMyCron('myNightlyCron123');

Interrupt a Cron

This example demonstrates how to cancel a running cron job.

  1. Use the same id and topic that were used to create the cron to cancel it.
    import { MeshCall } from '@hotmeshio/hotmesh';
    import * as Redis from 'redis';
    
    MeshCall.interrupt({
      topic: 'my.cron.function',
      connection: {
        class: Redis,
        options: { url: 'redis://:key_admin@redis:6379' }
      },
      options: { id: 'myNightlyCron123' }
    });

Call a Function

Make blazing fast interservice calls that behave like HTTP but without the setup and performance overhead. This example demonstrates how to connect a function to the mesh and call it from anywhere on the network.

  1. Call MeshCall.connect and provide a topic to uniquely identify the function.

    //myFunctionWrapper.ts
    import { MeshCall, Types } from '@hotmeshio/hotmesh';
    import * as Redis from 'redis';
    
    export const connectMyFunction = async () => {
      return await MeshCall.connect({
        topic: 'my.demo.function',
        connection: {
          class: Redis,
          options: { url: 'redis://:key_admin@redis:6379' }
        },
        callback: async (input: string) => {
          //your code goes here; response must be JSON serializable
          return { hello: input }
        },
      });
    };
  2. Call connectMyFunction at server startup to connect your function to the mesh.

    //server.ts
    import { connectMyFunction } from './myFunctionWrapper';
    connectMyFunction();
  3. Call your function from anywhere on the network (or even from the same service). Send any payload as long as it's JSON serializable.

    import { MeshCall } from '@hotmeshio/hotmesh';
    import * as Redis from 'redis';
    
    const result = await MeshCall.exec({
      topic: 'my.demo.function',
      args: ['something'],
      connection: {
        class: Redis,
        options: { url: 'redis://:key_admin@redis:6379' }
      },
    }); //returns `{ hello: 'something'}`

Cache a Function

Redis is great for unburdening stressed services. This solution builds upon the previous example, caching the response. The linked function will only be re/called when the cached result expires. Everything remains the same, except the caller which specifies an id and ttl.

  1. Make the call from another service (or even the same service). Include an id and ttl to cache the result for the specified duration.

    import { MeshCall } from '@hotmeshio/hotmesh';
    import * as Redis from 'redis';
    
    const result = await MeshCall.exec({
      topic: 'my.demo.function',
      args: ['anything'],
      connection: {
        class: Redis,
        options: { url: 'redis://:key_admin@redis:6379' }
      },
      options: { id: 'myid123', ttl: '15 minutes' },
    }); //returns `{ hello: 'anything'}`
  2. Flush the cache at any time, using the same topic and cache id.

    import { MeshCall } from '@hotmeshio/hotmesh';
    import * as Redis from 'redis';
    
    await MeshCall.flush({
      topic: 'my.demo.function',
      connection: {
        class: Redis,
        options: { url: 'redis://:key_admin@redis:6379' }
      },
      options: { id: 'myid123' },
    });

MeshFlow | Transactional Workflow

MeshFlow is a drop-in replacement for Temporal.io. If you need to orchestrate your functions as durable workflows, MeshFlow combines the popular Temporal SDK with Redis' in-memory execution speed.

Proxy Activities

When an endpoint is unpredictable, use proxyActivities. HotMesh will retry as necessary until the call succeeds. This example demonstrates a workflow that greets a user in both English and Spanish. Even though both activities throw random errors, the workflow always returns a successful result.

  1. Start by defining activities. Note how each throws an error 50% of the time.

    //activities.ts
    export async function greet(name: string): Promise<string> {
      if (Math.random() > 0.5) throw new Error('Random error');
      return `Hello, ${name}!`;
    }
    
    export async function saludar(nombre: string): Promise<string> {
      if (Math.random() > 0.5) throw new Error('Random error');
      return `¡Hola, ${nombre}!`;
    }
  2. Define the workflow logic. Include conditional branching, loops, etc to control activity execution. It's vanilla JavaScript written in your own coding style. The only requirement is to use proxyActivities, ensuring your activities are executed with HotMesh's durability wrapper.

    //workflows.ts
    import { MeshFlow } from '@hotmeshio/hotmesh';
    import * as activities from './activities';
    
    const { greet, saludar } = MeshFlow.workflow
      .proxyActivities<typeof activities>({
        activities
      });
    
    export async function example(name: string): Promise<[string, string]> {
      return Promise.all([
        greet(name),
        saludar(name)
      ]);
    }
  3. Instance a HotMesh client to invoke the workflow.

    //client.ts
    import { MeshFlow, HotMesh } from '@hotmeshio/hotmesh';
    import Redis from 'ioredis';
    
    async function run(): Promise<string> {
      const client = new MeshFlow.Client({
        connection: {
          class: Redis,
          options: { host: 'redis', port: 6379 }
        }
      });
    
      const handle = await client.workflow.start<[string,string]>({
        args: ['HotMesh'],
        taskQueue: 'default',
        workflowName: 'example',
        workflowId: HotMesh.guid()
      });
    
      return await handle.result();
      //returns ['Hello HotMesh', '¡Hola, HotMesh!']
    }
  4. Finally, create a worker and link the workflow function. Workers listen for tasks on their assigned Redis stream and invoke the workflow function each time they receive an event.

    //worker.ts
    import { MeshFlow } from '@hotmeshio/hotmesh';
    import Redis from 'ioredis';
    import * as workflows from './workflows';
    
    async function run() {
      const worker = await MeshFlow.Worker.create({
        connection: {
          class: Redis,
          options: { host: 'redis', port: 6379 },
        },
        taskQueue: 'default',
        workflow: workflows.example,
      });
    
      await worker.run();
    }

Wait for Signal

Pause a function and only awaken when a matching signal is received from the outide.

  1. Define the workflow logic. This one waits for the my-sig-nal signal, returning the signal payload ({ hello: 'world' }) when it eventually arrives. Interleave additional logic to meet your use case.

    //waitForWorkflow.ts
    import { MeshFlow } from '@hotmeshio/hotmesh';
    
    export async function waitForExample(): Promise<{hello: string}> {
      return await MeshFlow.workflow.waitFor<{hello: string}>('my-sig-nal');
      //continue processing, use the payload, etc...
    }
  2. Instance a HotMesh client and start a workflow. Use a custom workflow ID (myWorkflow123).

    //client.ts
    import { MeshFlow, HotMesh } from '@hotmeshio/hotmesh';
    import Redis from 'ioredis';
    
    async function run(): Promise<string> {
      const client = new MeshFlow.Client({
        connection: {
          class: Redis,
          options: { host: 'redis', port: 6379 }
        }
      });
    
      //start a workflow; it will immediately pause
      await client.workflow.start({
        args: ['HotMesh'],
        taskQueue: 'default',
        workflowName: 'waitForExample',
        workflowId: 'myWorkflow123',
        await: false,
      });
    }
  3. Create a worker and link the waitForExample workflow function.

    //worker.ts
    import { MeshFlow } from '@hotmeshio/hotmesh';
    import Redis from 'ioredis';
    import * as workflows from './waitForWorkflow';
    
    async function run() {
      const worker = await MeshFlow.Worker.create({
        connection: {
          class: Redis,
          options: { host: 'redis', port: 6379 },
        },
        taskQueue: 'default',
        workflow: workflows.waitForExample,
      });
    
      await worker.run();
    }
  4. Send a signal to awaken the paused function; await the function result.

    import { MeshFlow } from '@hotmeshio/hotmesh';
    import * as Redis from Redis;
    
    const client = new MeshFlow.Client({
      connection: {
        class: Redis,
        options: { host: 'redis', port: 6379 }
      }
    });
    
    //awaken the function by sending a signal
    await client.signal('my-sig-nal', { hello: 'world' });
    
    //get the workflow handle and await the result
    const handle = await client.getHandle({
      taskQueue: 'default',
      workflowId: 'myWorkflow123'
    });
       
    const result = await handle.result();
    //returns { hello: 'world' }

Collate Multiple Signals

Use a standard Promise to collate and cache multiple signals. HotMesh will only awaken once all signals have arrived. HotMesh will track up to 25 concurrent signals.

  1. Update the workflow logic to await two signals using a promise: my-sig-nal-1 and my-sig-nal-2. Add additional logic to meet your use case.

    //waitForWorkflows.ts
    import { MeshFlow } from '@hotmeshio/hotmesh';
    
    export async function waitForExample(): Promise<[boolean, number]> {
      const [s1, s2] = await Promise.all([
        Meshflow.workflow.waitFor<boolean>('my-sig-nal-1'),
        Meshflow.workflow.waitFor<number>('my-sig-nal-2')
      ]);
      //do something with the signal payloads (s1, s2)
      return [s1, s2];
    }
  2. Send two signals to awaken the paused function.

    import { MeshFlow } from '@hotmeshio/hotmesh';
    import * as Redis from Redis;
    
    const client = new MeshFlow.Client({
      connection: {
        class: Redis,
        options: { host: 'redis', port: 6379 }
      }
    });
    
    //send 2 signals to awaken the function; order is unimportant
    await client.signal('my-sig-nal-2', 12345);
    await client.signal('my-sig-nal-1', true);
    
    //get the workflow handle and await the collated result
    const handle = await client.getHandle({
      taskQueue: 'default',
      workflowId: 'myWorkflow123'
    });
       
    const result = await handle.result();
    //returns [true, 12345]

Cyclical Workflow

This example calls an activity and then sleeps for a week. It runs indefinitely until it's manually stopped. It takes advantage of durable execution and can safely sleep for months or years.

Container restarts have no impact on actively executing workflows as all state is retained in Redis.

  1. Define the workflow logic. This one calls a legacy statusDiagnostic function once a week.

    //recurringWorkflow.ts
    import { MeshFlow } from '@hotmeshio/hotmesh';
    import * as activities from './activities';
    
    const { statusDiagnostic } = MeshFlow.workflow
      .proxyActivities<typeof activities>({
        activities
      });
    
    export async function recurringExample(someValue: number): Promise<void> {
      do {
        await statusDiagnostic(someValue);
      } while (await MeshFlow.workflow.sleepFor('1 week'));
    }
  2. Instance a HotMesh client and start a workflow. Assign a custom workflow ID (e.g., myRecurring123) if the workflow should be idempotent.

    //client.ts
    import { MeshFlow, HotMesh } from '@hotmeshio/hotmesh';
    import Redis from 'ioredis';
    
    async function run(): Promise<string> {
      const client = new MeshFlow.Client({
        connection: {
          class: Redis,
          options: { host: 'redis', port: 6379 }
        }
      });
    
      //start a workflow; it will immediately pause
      await client.workflow.start({
        args: [55],
        taskQueue: 'default',
        workflowName: 'recurringExample',
        workflowId: 'myRecurring123',
        await: false,
      });
    }
  3. Create a worker and link the recurringExample workflow function.

    //worker.ts
    import { MeshFlow } from '@hotmeshio/hotmesh';
    import Redis from 'ioredis';
    import * as workflows from './recurringWorkflow';
    
    async function run() {
      const worker = await MeshFlow.Worker.create({
        connection: {
          class: Redis,
          options: { host: 'redis', port: 6379 },
        },
        taskQueue: 'default',
        workflow: workflows.recurringExample,
      });
    
      await worker.run();
    }
  4. Cancel the recurring workflow (myRecurring123) by calling interrupt.

    import { MeshFlow } from '@hotmeshio/hotmesh';
    import * as Redis from Redis;
    
    const client = new MeshFlow.Client({
      connection: {
        class: Redis,
        options: { host: 'redis', port: 6379 }
      }
    });
    
    //get the workflow handle and interrupt it
    const handle = await client.getHandle({
      taskQueue: 'default',
      workflowId: 'myRecurring123'
    });
       
    const result = await handle.interrupt();

MeshData | Transactional Analytics

MeshData extends the MeshFlow service, combining data record concepts and transactional workflow principles into a single Operational Data Layer.

Deployments with the Redis FT.SEARCH module enabled can use the MeshData module to merge OLTP and OLAP operations into a hybrid transactional/analytics (HTAP) system.

For those Redis deployments without the FT.SEARCH module, it's still useful to define a workflow schema. The MeshData class provides convenience methods for reading and writing hash field data to a workflow record (e.g., get, del, and incr).

Workflow Data Indexes

This example demonstrates how to define a schema and deploy an index for a 'user' entity type.

  1. Define the schema for the user entity. This one includes the 3 formats supported by the FT.SEARCH module: TEXT, TAG and NUMERIC.

    //schema.ts
    export const schema: Types.WorkflowSearchOptions = {
      schema: {
        id: { type: 'TAG', sortable: false },
        first: { type: 'TEXT', sortable: false, nostem: true },
        active: { type: 'TAG', sortable: false },
        created: { type: 'NUMERIC', sortable: true },
      },
      index: 'user',
      prefix: ['user'],
    };
  2. Create the Redis index upon server startup. This one initializes the 'user' index in Redis, using the schema defined in the previous step. It's OK to call createSearchIndex multiple times; it will only create the index if it doesn't already exist.

    //server.ts
    import { MeshData } from '@hotmeshio/hotmesh';
    import * as Redis from 'redis';
    import { schema } from './schema';
    
    const meshData = new MeshData(
      Redis,
      { url: 'redis://:key_admin@redis:6379' },
      schema,
    );
    await meshData.createSearchIndex('user', { namespace: 'meshdata' });

Workflow Record Data

This example demonstrates how to create a 'user' workflow backed by the searchable schema from the prior example.

  1. Call MeshData connect to initialize a 'user' entity worker. It references a target worker function which will run the workflow. Data fields that are documented in the schema (like active) will be automatically indexed when set on the workflow record.

    //connect.ts
    import { MeshData } from '@hotmeshio/hotmesh';
    import * as Redis from 'redis';
    import { schema } from './schema';
    
    export const connectUserWorker = async (): Promise<void> => {
      const meshData = new MeshData(
        Redis,
        { url: 'redis://:key_admin@redis:6379' },
        schema,
      );
       
      await meshData.connect({
        entity: 'user',
        target: async function(name: string): Promise<string> {
          //add custom, searchable data (`active`) and return
          const search = await MeshData.workflow.search();
          await search.set('active', 'yes');
          return `Welcome, ${name}.`;
        },
        options: { namespace: 'meshdata' },
      });
    }
  2. Wire up the worker at server startup, so it's ready to process incoming requests.

    //server.ts
    import { connectUserWorker } from './connect';
    await connectUserWorker();
  3. Call MeshData exec to create a 'user' workflow. Searchable data can be set throughout the workflow's lifecycle. This one initializes the workflow with 3 data fields: id, name and timestamp. An additional data field (active) is set within the workflow function in order to demonstrate both mechanisms for reading/writing data to a workflow.

    //exec.ts
    import { MeshData } from '@hotmeshio/hotmesh';
    import * as Redis from 'redis';
    
    const meshData = new MeshData(
      Redis,
      { url: 'redis://:key_admin@redis:6379' },
      schema,
    );
    
    export const newUser = async (id: string, name: string): Promise<string> => {
      const response = await meshData.exec({
        entity: 'user',
        args: [name],
        options: {
          ttl: 'infinity',
          id,
          search: {
            data: { id, name, timestamp: Date.now() }
          },
          namespace: 'meshdata',
        },
      });
      return response;
    };
  4. Call the newUser function to create a searchable 'user' record.

    import { newUser } from './exec';
    const response = await newUser('jim123', 'James');

Read Record Data

This example demonstrates how to read data fields directly from a workflow.

  1. Read data fields directly from the jimbo123 'user' record.

    //read.ts
    import { MeshData } from '@hotmeshio/hotmesh';
    import * as Redis from 'redis';
    import { schema } from './schema';
    
    const meshData = new MeshData(
      Redis,
      { url: 'redis://:key_admin@redis:6379' },
      schema,
    );
    
    const data = await meshData.get(
      'user',
      'jimbo123',
      { 
        fields: ['id', 'name', 'timestamp', 'active'],
        namespace: 'meshdata'
      },
    );

Query Record Data

This example demonstrates how to search for those workflows where a given condition exists in the data. This one searches for active users. NOTE: The native Redis FT.SEARCH syntax is supported. The JSON abstraction shown here is a convenience method for straight-forward, one-dimensional queries.

  1. Search for active users (where the value of the active field is yes).

    //read.ts
    import { MeshData } from '@hotmeshio/hotmesh';
    import * as Redis from 'redis';
    import { schema } from './schema';
    
    const meshData = new MeshData(
      Redis,
      { url: 'redis://:key_admin@redis:6379' },
      schema,
    );
    
    const results = await meshData.findWhere('user', {
      query: [{ field: 'active', is: '=', value: 'yes' }],
      limit: { start: 0, size: 100 },
      return: ['id', 'name', 'timestamp', 'active']
    });

Visualize | OpenTelemetry

HotMesh's telemetry output provides unmatched insight into long-running, x-service transactions. Add your Honeycomb credentials to any project using HotMesh and HotMesh will emit the full OpenTelemetry execution tree organized as a DAG.

Visualize | HotMesh Dashboard

The HotMesh dashboard provides a detailed overview of all running workflows. An LLM is included to simplify querying and analyzing workflow data for those deployments that include the Redis FT.SEARCH module.

Visualize | RedisInsight

View commands, streams, data, CPU, load, etc using the RedisInsight data browser.

Samples

Refer to the hotmeshio/samples-typescript Git repo for tutorials and instructions on deploying the HotMesh Dashboard for visualizing workflows and managing network health.

Refer to the hotmeshio/temporal-patterns-typescript Git repo for examples of common Temporal.io patterns implemented using HotMesh.

Advanced

The theory that underlies the architecture is applicable to any number of data storage and streaming backends: A Message-Oriented Approach to Decentralized Process Orchestration.