npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

@geometric/vectormath

v1.0.2

Published

![build](https://travis-ci.org/ngfelixl/vectormath.svg?branch=master) [![Coverage Status](https://coveralls.io/repos/github/ngfelixl/vectormath/badge.svg?branch=master)](https://coveralls.io/github/ngfelixl/vectormath?branch=master) ![dependencies](https:

Downloads

2

Readme

Vector

build Coverage Status dependencies npmversion license code style: prettier

Extends the JavaScript array with n-dimensional Vector and Matrix math capabilities. Well tested, controlled error flow, focus on usability. It even is capable of solving systems of linear equations.

Table of contents

1 Installation

npm install @geometric/vector

2 The Vector class

The Vector class extends the JavaScript Array class by algebraic operations like translation (add) or rotation. It can be of any dimension. Some functions are only available to specific number of dimensions and will throw a controlled error, e.g. cross-product requires three dimensions. It extends the standard JavaScript Array class, so it is aware of all default array features like fill or map.

2.1 Instatiation and filling with values

There are several ways to instatiate and fill vectors. One is to pass in the values as parameters. Import the vector class first.

import { Vector } from '@geometric/vector';

The vector has got the dimension of the number of passed in values.

const vec = new Vector(4, -1, 9);

If there is allready an existing Array and you want it to be a vector or an existing Vector and you want to copy it

const existing = [4, 5, 6];
// const existing = new Vector(2, 3, 4);
const vec = new Vector(...existing);

If you hand in only one parameter, the vector will be of that length, e.g. new Vector(10) will be a 10-dimensional empty vector. To fill it with values you can use the following items.

const vector = new Vector(20);
vector.zeros();
vector.random();
vector.fill(4);

It is also possible to chain these like

const vector = new Vector(20).random().normalize();

2.2 Data and Dimensions

Since this is an extension of the JavaScript Array there is the everyone knowing length function. This returns the number of elements and the number of elements is the array dimension. You can access each entry similarly with vector[0] style. Also it is possible to print the vector like

const vector = new Vector(1, 3, 4);
console.log(vector.length); // 3
console.log(vector); // [1, 3, 4]

2.3 Distance

Compute the length of the vector by

const vec = new Vector(4).random();
vec.distance;

2.4 Invert the vector

Compute the inversion of the (here 3-dimensional) vector by.

const vec = new Vector(3).random();
vec.invert();

2.5 Normalization

To normalize the vector (make it length 1 in euclidian space) you can simply use the normalize function.

const vec = new Vector(4).random();
vec.normalize();

2.6 (Signed) angle

There are two member functions for determining the angle between two vectors. The angle function returns the angle between two n-dimensional vectors in the range [0, PI].

const first = new Vector(20).random();
const second = new Vector(20).random();
const angle = first.angle(second);

Especially in 2D robotics, games and other movement tasks it often is required to also get the direction. Imagine the vectors (1, 0) and the angles between (0, 1) and (0, -1). The above method would return PI / 2 (90 degrees) in both cases.

To calculate the signed angle in two dimensions between this vector and the given vector in 2-dimensional space in respect to the executing vector the signedAngle function is provided. The angle will be in the range of (-PI, PI].

const angle = origin.signedAngle(target);

Imagine you look into the direction of this. If the parameter vector is to your left, the angle is positive, if the parameter vector is to your right, the angle is negative.

2.7 Addition (and Subtraction)

To add a vector or a scalar to a vector you can use the build-in add function. It automatically detects if it is a scalar or a vector.

const left = new Vector(2, 4, 0);
const right = new Vector(-3, 1, 2);
const vec1 = new Vector(1).fill(10);

const vectorSum = left.add(right); // []
const scalarSum = left.add(5); //
const vec1Sum = left.add(scalarVec); //

Vector-vector addition requires the vectors to have the same dimensions. A vector-scalar addition multiplicates each entry with that scalar.

2.8 Multiplication

There are several methods for different multiplication types. The first one is known as the dot-product. For two equally dimensioned vectors it returns the scalar-product. For vector-scalar multiplication it returns the scaled vector.

const vector1 = new Vector(1, -2, 3);
const vector2 = new Vector(2, 4, -1);

const scalar = vector1.dot(vector2); // -11
const vector = vector1.dot(2); // [2, -4, 6]

The next type of multiplication is the cross product. This type of multiplication is only available for 3-dimensional vectors (or in theory 7D).

const vector1 = new Vector(1, 0, 0);
const vector2 = new Vector(0, 1, 0);

const vector = vector1.cross(vector2); // [0, 0, 1]

The last multiplication is the element-wise multiplication / division. For this purpose the multiplyElementWise or divideElementWise is provided. It requires two equally dimensioned vectors and returns a vector with the same dimension.

2.9 Rotation

Rotation is currently only available in 2-dimensions. It rotates a vector by an angle [radians]. This operation is chainable.

const vector = new Vector(1, 0);
vector.rotate2D(Math.PI); // [-1, 0];

It uses the 2D rotation matrix.

| cos(angle)  -sin(angle) |
| sin(angle)   cos(angle) |

3 The Matrix

3.1 Instantiation and filling

The matrix class extends the JavaScript Array class containing Vectors as elements. It provides several helper classes and build in integrity checks. You can instantiate an empty matrix without any arguments.

const matrix = new Matrix();

or with shape arguments. E.g. passing in 2 and 3 generates a 2x3 matrix.

const matrix = new Matrix(2, 3);

To create the identity matrix there are two ways. Providing the parameter resizes the given matrix. Providing no parameter requires an NxN shaped matrix.

const matrix = new Matrix().identity(3);
const matrix = new Matrix(3, 3).identity();

There are also the methods zeros() and random() which fill the entire matrix with either 0s or randomly created numbers between 0 and 1. To get the matrix shape you can use

const matrix1 = new Matrix(3, 4);
const matrix2 = new Matrix().identity(2);
const matrix3 = new Matrix().from([
  [0, 1],
  [1, 0],
  [-1, 0],
]);

console.log(matrix1.shape); // [3, 4]
console.log(matrix2.shape); // [2, 2]
console.log(matrix3.shape); // [3, 2]

3.2 Multiplication

There are three types of matrix multiplications. Matrix-matrix, matrix-vector or matrix-scalar multiplication. For this purpose the dot method is provided. It automatically detects the parameter type and returns either a vector (if it is a matrix-vector multiplication) or a matrix. Imagine the following setup

const matrix = new Matrix().from([
  [2, 1, -1],
  [1, 0.5, 2],
]);
const zeros = new Matrix(3, 4).zeros();
const vector = new Vector(1, 2, 3);
const scalar = 4;

Can be used as follows

const matvec = matrix.dot(vector); // Vector [1, 8]
const matnum = matrix.dot(scalar); // Matrix [[8, 4, -4], [4, 2, 8]]
const matmat = matrix.dot(zeros); // Matrix 2x4 filled with zeroes

3.3 Determinant

Computes the determinant of the n-dimensional, equally shaped matrix.

const matrix = new Matrix().identity(3);
const determinant = matrix.determinant; // 3

3.4 Trace

Computes the trace (the sum over all diagonal entries) of the n-dimensional, equally shaped matrix.

const matrix = new Matrix().from([
  [2, 3],
  [-1, -4],
]);
const trace = matrix.trace; // -2

3.5 Submatrix extraction

Extracts a part of a larger matrix. Requires lower and upper x-range indices and lower and upper y-range indices.

const matrix = new Matrix().from([
  [3, 4, 1, 5],
  [0, 1, 2, 9],
  [-1, 0, 2, -4],
]);

const extraction = matrix.extract([1, 2], [2, 3]);
// [[2, 9], [2, -4]]

3.6 Transpose

To transpose the matrix you can use the transpose method. It swaps both dimensions.

const matrix = new Matrix().from([
  [1, 2],
  [3, 4],
  [5, 6],
]);
matrix.transpose();
console.log(matrix); // [[1, 3, 5], [2, 4, 6]]

3.7 System of linear equations

The matrix class is also able to solve systems of linear equations.

Ax = b

where A is the matrix, b is the result (vector) and x is the vector we want to compute.

const matrix = new Matrix().identity(3);
const vector = new Vector(-1, 2, -3);
const result = matrix.solve(vector); // [-1, 2, -3]

This also works with non-trivial cases. It returns null if no solution was found.

3.8 Diagonal matrices

The matrix diagonalization is based on Gauss-elimination. Use it as follows

const matrix = new Matrix().from([2, 3, 4], [1, 2, 3], [5, 6, 7]);
matrix.diagonalize();
console.log(matrix); // [[x, y, z], [0, a, b], [0, 0, c]];

4 2D-line-segment intersection

There is a helper function to detect the intersection of line-segments. Import it as follows

import { intersection, Vector } from '@geometric/vector';

Define your line-segments. Here line segments are defined by a starting and an end point. The intersection function will return a point as a vector or null if there is no intersection between these line segments.

const lineSegment1 = [new Vector(0, 0), new Vector(1, 1)];
const lineSegment2 = [new Vector(1, 0), new Vector(0, 1)];

const intersectionPoint = intersection(lineSegment1, lineSegment2);
// [0.5, 0.5]

It will also return null if the intersection accurs on one of the starting or end points. This behavior might be changed until v1.0.

5 Convex Hull

The script also contains a helper function to detect the 2-dimensional convex hull out of a bunch of points (vectors). Import it

import { convexHull } from '@geometric/vector';

The convex-hull sorts the points by x-coordinate, or y-coordinate if equal, ascending. Afterwards it calculates the upper hull and then the lower hull. In the end both hulls will be merged. This is an example for 20 randomly created 2-dimensional vectors.

// Create an array of 20 2-dimensional vectors
const vectors: Vector[] = [];
for (let i = 0; i < 20; i++) {
  vectors.push(new Vector(2).random());
}

// Determine the complex hull
const hull = convexHull(vectors);

The algorithms computation time is O(n logn) due to sorting.

6 Doubly-connected edge list

For geometric tasks it often is required to compute the doubly-connected edge list containing all edges with its faces on the left and the right and the previous and the next edge.

import { doublyConnectedEdgeList } from '@geometric/vector';

It requires all vectors to be 2-dimensional (having 2 entries).

const vectors = [new Vector(1, 0), new Vector(1, 1), new Vector(0, 1)];

const edgeList = doublyConnectedEdgeList(vectors);

It will produce an array of Nodes. The order determines the polygon. The above setup will produce the following edge list.

[
  {
    edge: [0, 1],
    start: [1, 0],
    end: [1, 1],
    faceLeft: 'f1',
    faceRight: 'f2',
    previous: 2,
    next: 1,
  },
  {
    edge: [-1, 0],
    start: [1, 1],
    end: [0, 1],
    faceLeft: 'f1',
    faceRight: 'f2',
    previous: 0,
    next: 2,
  },
  {
    edge: [1, -1],
    start: [0, 1],
    end: [1, 0],
    faceLeft: 'f1',
    faceRight: 'f2',
    previous: 1,
    next: 0,
  },
];

Attention: It currently checks for intersections with prior added edges. If an intersection occurs it will return null. This will be changed in the future, as it simply should result in an additional face.

7 Testing

Code quality is one of the most important things in computer science. Just the vector class has got more than 50 tests. They might be also useful for understanding this library. This minimizes code quality issues, bugs and improves the controlled error-flow significantly. Pull requests should include tests for usual and edge cases as well.

8 Roadmap

  • Implement eigenvectors and eigenvalues
  • Implement doubly-connected edge list
  • Implement Voronoi diagrams
  • Implement Delaunay triangulation
  • Implement polygon intersections

9 Contributing

Pull requests, issue reports and feature requests are very welcome.

10 Get in touch

twitter github

Hi, I am Felix, Angular and NgRX contributor

avatar

If you like this library, think about giving it a star or follow me on twitter or github.